strongSwan + wolfSSL + FIPS!

As some may be aware, wolfSSL added support for strongSwan in April of 2019. The upstream commit can be reviewed here: https://github.com/strongswan/strongswan/pull/133

Users can test the latest development master of wolfSSL with the latest version of strongSwan using the following setup:

wolfSSL Build and Installation Steps

$ git clone https://github.com/wolfSSL/wolfssl.git

$ cd wolfssl
$ ./autogen.sh

$ ./configure --enable-opensslall --enable-keygen --enable-rsapss --enable-des3 --enable-dtls --enable-certgen --enable-certreq --enable-certext --enable-sessioncerts --enable-crl --enable-ocsp CFLAGS="-DWOLFSSL_DES_ECB -DWOLFSSL_LOG_PRINTF -DWOLFSSL_PUBLIC_MP -DHAVE_EX_DATA"

$ make
$ make check
$ sudo make install

strongSwan Build and Installation Steps

# if the following packages are not already installed:
$ sudo apt-get install flex bison byacc libsoup2.4-dev gperf

$ git clone https://github.com/strongswan/strongswan.git
$ cd strongswan
$ ./autogen.sh

# if packages are missing autogen.sh must be re-run

$ ./configure --disable-defaults --enable-pki --enable-wolfssl --enable-pem
$ make
$ make check
$ sudo make install

wolfSSL has had interest in enabling FIPS 140-2/140-3 support with strongSwan so our engineers verified everything is working with the wolfCrypt FIPS 140-2 validated Module!

The steps wolfSSL used for testing are as follows:

Testing was done using the wolfSSL commercial FIPS release v4.7.0 which internally uses the wolfCrypt v4.0.0 FIPS 140-2 validated Crypto Module. It was located in the /home/user-name/Downloads directory on the target test system, Linux 4.15 Ubuntu 18.04 LTS running on Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80GHz.

  1. wolfSSL was configured and installed with these settings:
./configure --enable-opensslall --enable-keygen --enable-rsapss --enable-des3 --enable-dtls --enable-certgen --enable-certreq --enable-certext --enable-sessioncerts --enable-crl --enable-ocsp CFLAGS="-DWOLFSSL_DES_ECB -DWOLFSSL_LOG_PRINTF -DWOLFSSL_PUBLIC_MP -DHAVE_EX_DATA -DFP_MAX_BITS=8192" --enable-ed25519 --enable-curve25519 --enable-fips=v2 --enable-intelasm --prefix=$(pwd)/../fips-install-dir
 make
 make install
  1. A custom install location was used which equated to /home/user-name/Downloads/fips-install-dir and the configuration for strongSwan accounted for this.
  2. strongSwan was cloned to /home/user-name/Downloads with “git clone https://github.com/strongswan/strongswan.git
  3. StongSwan was configured and installed with these settings:
./configure --disable-defaults --enable-pki --enable-wolfssl --enable-pem --prefix=$(pwd)/../strongswan-install-dir wolfssl_CFLAGS="-I$(pwd)/../fips-install-dir/include" wolfssl_LIBS="-L$(pwd)/../fips-install-dir/lib -lwolfssl"
 make
 make install
 make check
  1. In the make check stage of the test, it was observed that 1 test was failing.
 Passed 34 of 35 'libstrongswan' suites
 FAIL: libstrongswan_tests
 ==================
 1 of 1 test failed
 ==================
  1. Reviewing the logs it was apparent one of the RSA tests was failing.
  2. Upon further debugging it turned out the failure was a test in strongSwan that was attempting to create an RSA key size of 1536-bits.
Running case 'generate':
 DEBUG: key_sizes[_i] set to 1024
 + PASS
 DEBUG: key_sizes[_i] set to 1536
 - FAIL
 DEBUG: key_sizes[_i] set to 2048
 + PASS
 DEBUG: key_sizes[_i] set to 3072
 + PASS
 DEBUG: key_sizes[_i] set to 4096
 + PASS

wolfSSL has a function RsaSizeCheck() which in FIPS mode will specifically reject any non FIPS RSA key sizes so this failure was not only expected, but it is a good thing for those wanting to use strongSwan in FIPS mode and ensure only FIPS-validated RSA key sizes will be supported!

wolfSSL is pleased that with the latest release of wolfSSL v4.7.0 and the wolfCrypt FIPS 140-2 module validated on FIPS certificate 3389, strongSwan support is working splendidly and wolfSSL engineers will be making efforts to ensure continued support into the future!

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

ST and wolfBoot Video Series

We are excited to tell you about our partner collaboration with STMicroelectronics! This collaboration is a video series about wolfBoot, a secure bootloader and the STM32, a family of 32-bit microcontrollers.

This will be at least a 4 part video series with the first two already up and ready and the next two videos already planned

Video 1: wolfBoot for STM32, Part 1: Overview https://www.youtube.com/watch?v=9R4Gl0qrzZ0

  • Overview of the wolfSSL products and the wolfBoot support for STM32 devices. The wolfBoot product features such as secure boot, measured boot, encrypted partitions and root of trust (in the bootloader, TPM or secure element). Comparison of the SBSFU, TFM and wolfBoot options for STM32 micro-controllers. Implementation details for design of wolfBoot and how the partitions are defined.”

Video 2: wolfBoot for STM32, Part 2: Getting Started https://www.youtube.com/watch?v=e5VwYA5kknA

  • How to download wolfBoot, where to find files and documentation. The wolfBoot product features such as secure boot, measured boot, encrypted partitions and root of trust (in the bootloader, TPM or secure element).”

Video 3: wolfBoot Out of the box with STM32G0.

Video 4: How to expand the wolfBoot HAL support for a new target.

Stay tuned for more information on when the next part of this video series goes live.


Additional Resources

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

In the meanwhile, check out the wolfSSL embedded SSL/TLS library, star us on Github, and learn more about the latest TLS 1.3 is available in wolfSSL.

wolfSSL v4.8.1 Release

wolfSSL version 4.8.1 is available for download!!

This version of wolfSSL includes many new features, ports, and some great fixes. Some of the new features added includes:

  • A tie in for use with wolfSentry
    • wolfSentry is a universal, dynamic, embedded IDPS (intrusion detection and prevention system)
    • The build option added to enable the code for use with wolfSentry can be compiled using the autotools flag –enable-wolfsentry. wolfSentry is our new product that can be used in a similar fashion as a firewall but unlike many firewall applications available today wolfSentry is designed for deeply embedded IoT devices with resource constraints.
    • Learn more from our webinar: Introducing wolfSentry, an Embeddable IDPS
  • A number of API for the compatibility layer 
    • Helps support replacing OpenSSL using wolfSSL along with updating your crypto for FIPS requirements, 
  • A QNX CAAM driver for use with NXP’  i.MX devices, 
    • CAAM stands for Cryptographic Accelerator and Assurance Module. When used, it speeds up the cryptographic algorithms such as ECC and AES, as well as increases security by using encrypted keys and secure memory partitions.
  • Support for STM32G0
  • Zephyr project example,
    • The Zephyr Project is a scalable real-time operating system (RTOS) supporting multiple hardware architectures, optimized for resource constrained devices, and built with safety and security in mind.
  • An easy-to-use Dolphin emulator test for DEVKITPRO
    • devkitPro is a set of tool chains for compiling to gaming platforms.
  • Fixes for PKCS#7 
    • PKCS#7 is used to sign, encrypt, or decrypt messages under Public Key Infrastructure (PKI). It is also used for certificate dissemination, but is most commonly used for single sign-on.
  • Better parsing and handling of edge cases along with fixes for existing ports. 
  • Fixes that came from testing with Coverity and fsanitizer tools. 
    • Coverity is very efficient in finding issues, and is often used as a metric for good code (based on how many issues are found and fixed)
    •  fsanitizer is a static analysis tool
  • Two vulnerabilities announced, 
    • one dealing with OCSP 
      • OCSP or “Online Certificate Status Protocol” is an Internet protocol that is used to obtain the revocation status of an X.509 digital certificate.
    • the other with a previously fixed base64 PEM decoding side channel vulnerability.
      • PEM, or “Privacy Enhanced Mail” is the most common format that certificates are issued in by certificate authorities.

For a full list of changes, check out the updated ChangeLog.md bundled with wolfSSL or view our page on GitHub here (https://github.com/wolfSSL/wolfssl).

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfTPM first to support Nuvoton NPCT75x extra GPIO for safety-critical applications

wolfTPM is the leading TPM library for embedded and baremetal applications. It is widely used in aerospace, military, and medical systems because the wolfSSL TPM 2.0 library is designed specifically for embedded systems. wolfTPM offers a low memory footprint and supports all of the TPM 2.0 commands and operations; as well as provids examples of: attestation, NVRAM usage, secure storage, and sealing.

Today, we have expanded on the new  TPM 2.0 feature called Extra GPIO, by adding support for the newest variant of NPCT75x modules by Nuvoton.

It is now possible to protect and control GPIO by using TPM 2.0 authorization. This way, extra GPIO on the TPM chip becomes a great tool for signaling of critical events across subsystems.

Since, wolfTPM already offers support for extra GPIO for ST33 modules from STMicroelectronics. Here is a brief comparison of the GPIO capabilities between ST33 and NPCT75x :

Manufacturer Model Extra GPIO availability GPIO modes
Nuvoton NPCT75x 2 GPIO for SPI & I2C 3 output modes
STMicroelectronics ST33 2 GPIO for SPI

4 GPIO for I2C
6 modes in total

In safety-critical systems, extra GPIO control through the TPM 2.0 module provides signaling for security events and important changes of the system state. Such use cases are observed in the rising railway IoT automation and in modern automotive systems.

We want to thank the team at Nuvoton led by Mr. Oren and the amazing field application engineer Ms. Dana for collaborating on this project.

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

cURL Security Advisories

The 200th curl release found 3 major security advisories from the curl bug-bounty program. These are the advisories:

This is a Use-After-Free in the OpenSSL backend code that in the absolutely worst case can lead to an RCE, a Remote Code Execution. The flaw is reasonably recently added and it’s very hard to exploit but you should upgrade or patch immediately.

The issue occurs when TLS session related info is sent from the TLS server when the transfer that previously used it is already done and gone.

When libcurl accepts custom TELNET options to send to the server, it the input parser was flawed which could be exploited to have libcurl instead send contents from the stack.

In the Schannel backend code, the selected cipher for a transfer done with was stored in a static variable. This caused one transfer’s choice to weaken the choice for a single set transfer could unknowingly affect other connections to a lower security grade than intended.

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfSentry Operating Environments

Our first preview release of wolfSentry, the IDPS (Intrusion Detection and Prevention System) for embedded and IoT systems, has platform support for Raspberry Pi, STM32 with CubeMX, Atmel ASF and Barebox. As well as native support for Microsoft Windows and Linux.

Here at wolfSSL we are always striving to be better so we would love to hear which operating environments and platforms you would like to see supported by wolfSentry.

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfCrypt FIPS Operating Environments

wolfSSL fans! Do you like FIPS? Do you like virtual machines? Guess what. wolfSSL`s crypto library, wolfCrypt, is validated for FIPS 140-2 and in the process of being one of the first cryptography libraries to be validated for FIPS 140-3

As wolfCrypt is commonly used in standard operating environments because of its royalty-free pricing and excellent cross platform support, wolfCrypt FIPS has been validated on a number of Operating Environments (OEs). The current validated OE list for both wolfCrypt FIPS certificates (#2425 and #3389) are listed here for reference.  

Certificate #2425 Current OE List:

Operating SystemProcessorPlatform
Linux 3.13 (Ubuntu)Intel® Core™ i7-3720QM CPU @2.60GHz x 8HP EliteBook
iOS 8.1Apple™ A8iPhone™ 6
Android 4.4Qualcomm Krait 400Samsung Galaxy S5
FreeRTOS 7.6ST Micro STM32FuTrust TS Reader
Windows 7 (64-bit)Intel® Core™ i5Sony Vaio Pro
Linux 3.0 (SLES 11 SP4, 64-bit)Intel® Xeon® E3-1225Imprivata OneSign
Linux 3.0 (SLES 11 SP4, 64-bit) on Microsoft Hyper-V 2012R2 CoreIntel® Xeon® E5-2640Dell® PowerEdge™ r630
Linux 3.0 (SLES 11 SP4, 64-bit) on VMWare ESXi 5.5.0Intel® Xeon® E5-2640Dell® PowerEdge™ r630
Windows 7 (64-bit) on VMWare ESXi 5.5.0Intel® Xeon® E5-2640Dell® PowerEdge™ r630
Android Dalvik 4.2.2NXP i.MX6 MXT?700?NC 7” touch
panel
Linux 4.1.15NXP i.MX5NX?1200 NetLinx NX
Integrated Controller
Debian 8.8Intel Xeon® 1275v3CA PAM 304L Server
Windows Server 2012R2Intel® Xeon® E5335CA Technologies
PAMHAF995
Windows 7 Professional SP1Intel® Core™ i7?2640MDell™ Latitude™ E6520
Debian 8.7.0Intel ® Xeon® E3 Family with SGX supportIntel® x64 Server System
R1304SP
Windows 10 ProIntel ® Core ™ i5 with SGX supportDell™ Latitude™ 7480
NET+OS v7.6 Digi International NS9210Sigma IV infusion pump
Linux 4.4 (SLES 12 SP3, 64?
bit) on Microsoft Hyper?V
2016 Core
Intel® Xeon® E5?2650Dell® PowerEdge™ r720
Linux 4.4 (SLES 12 SP3, 64?
bit) on VMWare ESXi 6.5.0
Intel® Xeon® E5?2403Dell® PowerEdge™ r420

Certificate #3389 Current OE List:

Operating SystemProcessorPlatform
OpenRTOS v10.1.1STM32L4RxSTMicroelectronics STM32L4R9I-DISCO (Discovery Kit)
HP Imaging & Printing Linux 4.9ARMv8 Cortex-A72/A53HP PN 3PZ95-60002
Windows 10 EnterpriseIntel® Core™ i7-7820 x4Radar FCL Package Utility
Linux socfpga cyclone VArmv7 rev 0, Cortex A-9SEL 2700 Series 24-Port Ethernet Switch
Fusion Embedded RTOS 5.0Analog Devices ADSP-BF516 (Blackfin)Classone ® IP Radio Gateway
Linux 4.12 Yocto StandardFreescale i.MX6 DualLite ARMv7 Cortex-A9 x2Metasys® SNC Series Network Control Engine
Nucleus 3.0 version 2013.08.1Freescale Vybrid VF500XL200 Radio
CodeOS v1.4CT8200 (ARM FA626TE)HP ProLiant DL360
Linux 4.14Armv8 Cortex-A53SEL-2742S
CMSIS-RTOS v2.1.3Silicon Labs EFM32GAlto™
Windows CE 6.0ARM Cortex-A8HP LaserJet Enterprise
QNX 6.6NXP i.MX 6SoloX Arm® Cortex®-A9Zebra ZT610
QNX 7.0NXP i.MX7 Arm® Cortex®-A7 (x2)Zebra ZD621
QNX 6.5NXP i.MX25 Arm9™Zebra ZQ630
QNX 7.0NXP i.MX 6ULL Arm® Cortex®-A7Zebra ZT421
SUSE Linux Enterprise hosted in Hypervisor Vmware ESXi 6.7.0Intel® Xeon® E-2234Dell PowerEdge T340
Linux 4.14Dual ARM Cortex A9Lenovo XClarity Controller
Swoop Kernel 1.5Xilinx Zynq Ultrascale+ XCZU9EG™Skipper
Windows Server 2016Intel® Xeon® E5-2603Dell PowerEdge R430
NET+OS v7.6NS9210Sigma IV Infusion Pump
Windows 10 ProIntel® Core™ i7-7600ULenovo Thinkpad T470
Windows Server 2019Intel® Xeon® Silver 4116 (x24)HPE ProLiant DL360
Android 11Qualcomm Snapdragon 865 (SoC)Samsung Galaxy S20 5G
Linux 5.4Freescale i.MX7 Dual ARM® Cortex-A7iSTAR physical access controller
Linux 5.4Intel® Xeon® E-2244GDell PowerEdge R340 Rack Server
Linux 4.12Intel® Core™ i3-7101HP PageWide XL
Linux 4.9Freescale i.MX7 Dual ARM® Cortex-A7ZOLL Communications Module
NetBSD v6.0.1Intel(R) Atom(R) E3930RICOH IM C2500
NetBSD v6.0.1Intel(R) Atom(R) E3940RICOH IM C6000
Android 6.0 (Linux 4.1)Freescale i.MX6 Quad/DualLiteRICOH IM C6000
iOS 14Apple A14 BioniciPhone 12
Android 8.1 (Linux 4.4)Qualcomm Snapdragon 835 (APQ8098 / MSM8998)EchoNous Kosmos® Bridge
CentOS Linux 7.9 on VMware ESXi 6.7Intel® Xeon® X5650 @2.67GHzHP ProLiant DL360
Linux 3.10 (CentOS 7) Intel® Atom™ CPU D525 @1.80GHzBeckman Coulter PROService RAP BOX
Yocto (dunfell) 3.1AMD GX-412TC SoCLinkGuard
Linux 5.4Intel® Xeon® Gold 5218 CPU @ 2.30GHzLiveAction LiveNX Appliance
Windows 10 ProIntel® Core™ i7-1255U @1.70 GHzDell Precision 3570
FreeBSD 10.3 on VMWare ESXi 7.0Intel® Xeon® Silver 4210 @2.20GHzSupermicro X11DPH-i (vnc-wolf)
Linux 5.15 on VMWare ESXi 7.0Intel® Xeon® Silver 4210 @2.20GHzSupermicro X11DPH-i (sdlc-wolf)
Debian GNU/Linux 8 (jessie)Broadcom BCM5634Corning 1LAN-SDDP-24POE (onl-armel)
Linux IPHO00550F22 4.1Broadcom BCM6858Corning 1LAN-SDAN-7691 (bcm6858x)
Debian GNU/Linux 8 (jessie)Intel® Atom™ C2558 @ 2.40GHzufiSpace Cloud and Data Center Switch S7810-54QS (onl-x86_64)
Linux IPHO00559B23 3.4Broadcom BCM6838Corning 1LAN-SDAN-7290 (bcm683xx)
VxWorks 7 SR0630Intel® Core™ i7-5850EQ @2.70GHzF-16 WASP
macOS Monterey 12.5Intel® Core™ i7-8569U @2.80GHzMacBook Pro
macOS Monterey 12.5Apple M1 MaxMacBook Pro
Windows 11 EnterpriseIntel® Core™ i7-10610U @1.80GHzDell Latitude 7410
Endace Crypto Firmware 1.0Intel® Xeon® Silver 4316 CPU @2.30GHzEndaceProbe 2144
macOS Monterey 12.5Apple M1MacBook Air
Vortec SchedulerStarCore SC3850 DSPAvaya MP160
VxWorks 7NXP T1024G450 Media Gateway
VxWorks 6.9NXP MPC8650G430 Media Gateway
VxWorks 6.9TNETV1050Sectéra vIPer™ Phone
VxWorks 5.5Marvell Poncat2 Sheeva™ML6416E
Janteq Zynq Linux 5.4Xilinx Zynq-7000 SoCAviTr3
Janteq Zynq Linux 4.19Xilinx Zynq Ultrascale+Bronte3
Janteq S5L Linux 4.9Ambarella S5L SoCMaximo
Endace Crypto Firmware 1.0Intel® Xeon® Gold 6338N CPU @2.20GHzEndaceProbe 2184
Endace Crypto Firmware 1.0Intel® Xeon® Gold 5418N CPU @1.80GHzEndaceProbe 94C8
Endace Crypto Firmware 1.0Intel® Xeon® Gold 6230N CPU @2.30GHzEndaceProbe 92C8
Janteq iMX8QM Linux version 5.4i.MX8 Quad Max SoCFlip2
Android 13QualComm SnapDragon 8 SoCSamsung Galaxy S22

wolfSSL can easily add additional OEs to existing wolfCrypt FIPS certificates.

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

strongSwan + wolfSSL + FIPS!

As some may be aware, wolfSSL added support for strongSwan in April of 2019. The upstream commit can be reviewed here: https://github.com/strongswan/strongswan/pull/133

Users can test the latest development master of wolfSSL with the latest version of strongSwan using the following setup:

wolfSSL Build and Installation Steps

$ git clone https://github.com/wolfSSL/wolfssl.git

$ cd wolfssl
$ ./autogen.sh

$ ./configure --enable-opensslall --enable-keygen --enable-rsapss --enable-des3 --enable-dtls --enable-certgen --enable-certreq --enable-certext --enable-sessioncerts --enable-crl --enable-ocsp CFLAGS="-DWOLFSSL_DES_ECB -DWOLFSSL_LOG_PRINTF -DWOLFSSL_PUBLIC_MP -DHAVE_EX_DATA"

$ make
$ make check
$ sudo make install

strongSwan Build and Installation Steps

# if the following packages are not already installed:
$ sudo apt-get install flex bison byacc libsoup2.4-dev gperf

$ git clone https://github.com/strongswan/strongswan.git
$ cd strongswan
$ ./autogen.sh

# if packages are missing autogen.sh must be re-run

$ ./configure --disable-defaults --enable-pki --enable-wolfssl --enable-pem
$ make
$ make check
$ sudo make install

wolfSSL has had interest in enabling FIPS 140-2/140-3 support with strongSwan so our engineers verified everything is working with the wolfCrypt FIPS 140-2 validated Module!

The steps wolfSSL used for testing are as follows:

Testing was done using the wolfSSL commercial FIPS release v4.7.0 which internally uses the wolfCrypt v4.0.0 FIPS 140-2 validated Crypto Module. It was located in the /home/user-name/Downloads directory on the target test system, Linux 4.15 Ubuntu 18.04 LTS running on Intel(R) Xeon(R) CPU E3-1270 v6 @ 3.80GHz.

  1. wolfSSL was configured and installed with these settings:
./configure --enable-opensslall --enable-keygen --enable-rsapss --enable-des3 --enable-dtls --enable-certgen --enable-certreq --enable-certext --enable-sessioncerts --enable-crl --enable-ocsp CFLAGS="-DWOLFSSL_DES_ECB -DWOLFSSL_LOG_PRINTF -DWOLFSSL_PUBLIC_MP -DHAVE_EX_DATA -DFP_MAX_BITS=8192" --enable-ed25519 --enable-curve25519 --enable-fips=v2 --enable-intelasm --prefix=$(pwd)/../fips-install-dir
 make
 make install
  1. A custom install location was used which equated to /home/user-name/Downloads/fips-install-dir and the configuration for strongSwan accounted for this.
  2. strongSwan was cloned to /home/user-name/Downloads with “git clone https://github.com/strongswan/strongswan.git
  3. StongSwan was configured and installed with these settings:
./configure --disable-defaults --enable-pki --enable-wolfssl --enable-pem --prefix=$(pwd)/../strongswan-install-dir wolfssl_CFLAGS="-I$(pwd)/../fips-install-dir/include" wolfssl_LIBS="-L$(pwd)/../fips-install-dir/lib -lwolfssl"
 make
 make install
 make check
  1. In the make check stage of the test, it was observed that 1 test was failing.
 Passed 34 of 35 'libstrongswan' suites
 FAIL: libstrongswan_tests
 ==================
 1 of 1 test failed
 ==================
  1. Reviewing the logs it was apparent one of the RSA tests was failing.
  2. Upon further debugging it turned out the failure was a test in strongSwan that was attempting to create an RSA key size of 1536-bits.
Running case 'generate':
 DEBUG: key_sizes[_i] set to 1024
 + PASS
 DEBUG: key_sizes[_i] set to 1536
 - FAIL
 DEBUG: key_sizes[_i] set to 2048
 + PASS
 DEBUG: key_sizes[_i] set to 3072
 + PASS
 DEBUG: key_sizes[_i] set to 4096
 + PASS

wolfSSL has a function RsaSizeCheck() which in FIPS mode will specifically reject any non FIPS RSA key sizes so this failure was not only expected, but it is a good thing for those wanting to use strongSwan in FIPS mode and ensure only FIPS-validated RSA key sizes will be supported!

wolfSSL is pleased that with the latest release of wolfSSL v4.7.0 and the wolfCrypt FIPS 140-2 module validated on FIPS certificate 3389, strongSwan support is working splendidly and wolfSSL engineers will be making efforts to ensure continued support into the future!

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfSSL Asynchronous Release v4.7.0

The wolfSSL / wolfCrypt libraries support asynchronous (non-blocking) crypto using hardware acceleration with the Intel QuickAssist and Cavium Nitrox III/V adapters. These are PCIe devices that accelerate crypto operations. For server platforms requiring high connection rates and throughput this allows greatly increased performance.

For some performance numbers see this page: https://www.wolfssl.com/docs/intel-quickassist/

Release v4.7.0 of wolfSSL Async has bug fixes and new features including:

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

BSD Kernel Mode compatibility for wolfSSL

We are in the process of adding BSD Kernel compatibility to wolfSSL. This means that our embedded SSL library would run in Kernel mode and use BSD based OE’s. The advantage of this project may include performance enhancement for device driver implementers that want SSL security. Stay tuned for more updates regarding this project. We would love to know do Kernel developers want an SSL library? Please comment!

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

Posts navigation

1 2 3 18 19 20 21 22 23 24