RECENT BLOG NEWS
wolfMQTT connects with IBM’s Watson IoT Platform
With the latest wolfMQTT v1.1 release you can easily connect your devices running wolfMQTT to IBM’s Watson IoT Platform. Trying out wolfMQTT is simple using the provided MQTT client example and your IBM Cloud account. The default example provides a link to the IBM Quickstart broker where you can view a graph generated by the data without an account.
As a side note, wolfMQTT uses the wolfSSL embedded SSL/TLS library for SSL/TLS support. Since wolfSSL supports TLS 1.3, your wolfMQTT-based projects can now use MQTT with TLS 1.3 with a supported broker!
You can download the latest release from our website or clone on GitHub. For more information please email us at facts@wolfssl.com.
wolfSSL now has lwIP support
The wolfSSL (formerly CyaSSL) embedded SSL library supports lwIP, the light weight internet protocol implementation, out of the box. The user merely needs to define WOLFSSL_LWIP
or uncomment the line /* #define WOLFSSL_LWIP */
in os_settings.h to use wolfSSL with lwIP.
The focus of lwIP is to reduce RAM usage while still providing a full TCP stack. That focus makes lwIP great for use in embedded systems, the same area where wolfSSL is an ideal match for SSL/TLS needs. An active community exists with contributor ports for many systems. Give it a try and let us know if you have any suggestions or questions.
For the latest news and releases of lwIP, you can visit the project homepage, here: http://savannah.nongnu.org/projects/lwip/
Intro to PKCS #5: Password-Based Cryptography Specification
Our third post in our PKCS series, we will be looking at PKCS #5. PKCS #5 is the Password-Based Cryptography Specification and is currently defined by version 2.0 of the specification. It is defined in RFC 2898 http://tools.ietf.org/html/rfc2898. It applies a pseudorandom function, such as a cryptographic hash, cipher, or HMAC to the input password or passphrase along with a salt value and repeats the process many times to produce a derived key, which can then be used as a cryptographic key in subsequent operations. The added computational work makes password cracking much more difficult, and is known as key stretching.
A. Key Derivation Functions
A key derivation function produces a derived key from a based key and other parameters. In a password-based key derivation function, the base key is a password and the other parameters are a salt value and an iteration count.
Two functions are specified below: PBKDF1 and PBKDF2. PBKDF2 is recommended for new applications; PBKDF1 is included only for compatibility with existing applications, and is not recommended for new applications.
B. PBKDF1
PBKDF1 applies a hash function, which shall be MD2, MD5 or SHA-1, to derive keys. The lengths of the derived keying bounded by the length of the hash function output, which is 16 octets from MD2 and MD5 and 20 octets from SHA-1.
Steps:
1. If dkLen > 16 for MD2 and MD5, or dkLen > 20 for SHA-1, output “derived key too long” and stop.
2. Apply the underlying hash function Hash for c iterations to the concatenation of the password P and
the salt S, then extract the first dkLen octets to produce a derived key DK:
T_1 = Hash (P || S) ,
T_2 = Hash (T_1) ,
…
T_c = Hash (T_{c-1}) ,
DK = Tc<0..dkLen-1>
3. Output the derived key DK.
C. PBKDF2
PBKDF2 applies a pseudorandom function to derive keys. The length of the derived key is essentially unbounded. However, the maximum effective search space for the derived key may be limited by the structure of the underlying pseudorandom function.
Steps:
1. If dkLen > (2^32 – 1) * hLen, output “derived key too long” and stop.
2. Let l be the number of hLen-octet blocks in the derived key, rounding up, and let r be the number of octets
in the last block:
l = CEIL (dkLen / hLen) ,
r = dkLen – (l – 1) * hLen .
Here, CEIL (x) is the “ceiling” function, i.e. the smallest integer greater than, or equal to, x.
3. For each block of the derived key apply the function F defined below to the password P, the salt S, the
iteration count c, and the block index to compute the block:
T_1 = F (P, S, c, 1) ,
T_2 = F (P, S, c, 2) ,
…
T_l = F (P, S, c, l) ,
where the function F is defined as the exclusive-or sum of the first c iterates of the underlying pseudorandom function PRF applied to the password P and the concatenation of the salt S and the block index i:
F (P, S, c, i) = U_1 \xor U_2 \xor … \xor U_c
where
U_1 = PRF (P, S || INT (i)) ,
U_2 = PRF (P, U_1) ,
…
U_c = PRF (P, U_{c-1}) .
Here, INT (i) is a four-octet encoding of the integer i, most significant octet first.
4. Concatenate the blocks and extract the first dkLen octets to produce a derived key DK:
DK = T_1 || T_2 || … || T_l<0..r-1>
5. Output the derived key DK.
To learn more about PKCS #5, you can look through the specification, here:
http://tools.ietf.org/html/rfc2898
D. CyaSSL Support
CyaSSL supports both PBKDF1 and PBKDF2. The header file can be found in <cyassl_root>/cyassl/ctaocrypt/pwdbased.h and the source file can be found in <cyassl_root>/ctaocrypt/src/pwdbased.c of the CyaSSL library. When using these functions, they must be enabled when CyaSSL is configured. This is done by:
./configure –enable-pwdbased
The functions:
int PBKDF1(byte* output, const byte* passwd, int pLen, const byte* salt, int sLen, int iterations, int kLen, int hashType); int PBKDF2(byte* output, const byte* passwd, int pLen, const byte* salt, int sLen, int iterations, int kLen, int hashType);
CyaSSL also supports PKCS12
int PKCS12_PBKDF(byte* output, const byte* passwd, int pLen, const byte* salt, int sLen, int iterations, int kLen, int hashType, int purpose);
To learn more about the CyaSSL embedded SSL library, you can download a free GPLv2-licensed copy from the wolfSSL download page, http://wolfssl.com/yaSSL/download/downloadForm.php, or look through the CyaSSL Manual, https://www.wolfssl.com/docs/wolfssl-manual/. If you have any additional questions, please contact us at facts@wolfssl.com.
What is a Stream Cipher?
A stream cipher encrypts plaintext messages by applying an encryption algorithm with a pseudorandom cipher digit stream (keystream). Each bit of the message is encrypted one by one with the corresponding keystream digit. Stream ciphers are typically used in cases where speed and simplicity are both requirements. If a 128 bit block cipher such as AES were to be used in place of a stream cipher where it was encrypting messages of 32 bit blocks, 96 bits of padding would remain. This is an inefficient approach and one reason why a stream cipher would be preferred, since they operate on the smallest possible unit.
Some common stream ciphers include RC4 (which has been shown to be vulnerable to attacks), Salsa20, ChaCha (a seemingly better variant of Salsa20), Rabbit, and HC-256, among others. Block ciphers can be used in stream mode to act as a stream cipher. If a block cipher is run in CFB, OFB, or CTR mode, it does not require additional measures to handle messages that aren’t equivalent to the length of multiples of the block size and eliminates the padding effect.
For information on the stream ciphers that can be implemented with wolfSSL or to learn more about the wolfSSL embedded SSL/TLS library, please view our wolfSSL product page or contact us at facts@wolfssl.com.
References
[1] Stream cipher. (2014, November 19). In Wikipedia, The Free Encyclopedia. Retrieved 16:19,
December
19, 2014, from http://en.wikipedia.org/w/index.php?title=Stream_cipher&oldid=634494612.
Most recent version:
https://en.wikipedia.org/wiki/Stream_cipher
[2] Margaret Rouse. Stream Cipher. (2005). Available URL:
http://searchsecurity.techtarget.com/definition/stream-cipher.
[3] Block cipher mode of operation. (2014, December 12). In Wikipedia, The Free
Encyclopedia. Retrieved 17:13, December 19, 2014, from
http://en.wikipedia.org/w/index.php?title=Block_cipher_mode_of_operation&oldid=637837298.
Most recent version:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
When to use Pre Shared Key (PSK) Cipher Suites
PSK cipher suites are a superb choice in low resource environments where both ends of the connection can be controlled. With PSK, each side of the connection has an already agreed upon key to use rather than agreeing on one during the TLS handshake. This reduces resource consumption for each session using PSK.
For example, on one of wolfSSL’s test machines the cipher suite DHE-PSK-AES128-CBC-SHA256 has an average connection time of 3.498 milliseconds with a peak byte usage of 6,335. On the same machine a similar cipher suite DHE-RSA-AES128-SHA256, not using PSK, has an average connection time of 7.146 milliseconds and peak byte usage of 19,431. wolfSSL always recommends using ephemeral keys (DHE or ECDHE) to maintain forward secrecy but in an ultra limited resource environment, memory and speed can be further improved by using a static PSK cipher suite such as PSK-AES128-CBC-SHA.
In addition to RAM reduction, using PSK can reduce the library footprint size as well. One of the smallest wolfSSL builds to date has been the LeanPSK build, which comes in at around 21kB. For comparison, a typical build on an embedded, optimized compiler will be 60-100kB.
For information regarding the use of PSK cipher suites or general inquiries about wolfSSL’s embedded SSL/TLS library contact us!
Wikipedia: https://en.wikipedia.org/wiki/TLS-PSK
Differences between TLS 1.2 and TLS 1.3 (#TLS13)
With the release of TLS 1.3, there are promises of enhanced security and speed. But how exactly do the changes from TLS 1.2 to TLS 1.3 cause these improvements? The following is a list of differences between TLS 1.2 and 1.3 that shows how the improvements are achieved.
wolfSSL is among the first libraries to support TLS 1.3. Below are the major differences between TLS 1.2 and TLS 1.3
TLS 1.3
This protocol is defined in Draft 28. TLS 1.3 contains improved security and speed. The major differences include:
• The list of supported symmetric algorithms has been pruned of all legacy algorithms. The remaining algorithms all use Authenticated Encryption with Associated Data (AEAD) algorithms.
• A zero-RTT (0-RTT) mode was added, saving a round-trip at connection setup for some application data at the cost of certain security properties.
• Static RSA and Diffie-Hellman cipher suites have been removed; all public-key based key exchange mechanisms now provide forward secrecy.
• All handshake messages after the ServerHello are now encrypted.
• Key derivation functions have been re-designed, with the HMAC-based Extract-and-Expand Key Derivation Function (HKDF) being used as a primitive.
• The handshake state machine has been restructured to be more consistent and remove superfluous messages.
• ECC is now in the base spec and includes new signature algorithms. Point format negotiation has been removed in favor of single point format for each curve.
• Compression, custom DHE groups, and DSA have been removed, RSA padding now uses PSS.
• TLS 1.2 version negotiation verification mechanism was deprecated in favor of a version list in an extension.
• Session resumption with and without server-side state and the PSK-based ciphersuites of earlier versions of TLS have been replaced by a single new PSK exchange.
Internet Draft: https://tools.ietf.org/html/draft-ietf-tls-tls13-28
Resources:
If you would like to read more about SSL or TLS, here are several resources that might be helpful:
TLS – Wikipedia (http://en.wikipedia.org/wiki/Transport_Layer_Security)
SSL versus TLS – What`s the Difference? (http://luxsci.com/blog/ssl-versus-tls-whats-the-difference.html)
Differences Between SSL and TLS Protocol Versions (http://www.wolfssl.com/differences-between-ssl-and-tls-protocol-versions/)
Cisco – SSL: Foundation for Web Security (http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-1/ssl.html)
What is a Block Cipher?
A block cipher is an encryption method that applies a deterministic algorithm along with a symmetric key to encrypt a block of text, rather than encrypting one bit at a time as in stream ciphers. For example, a common block cipher, AES, encrypts 128 bit blocks with a key of predetermined length: 128, 192, or 256 bits. Block ciphers are pseudorandom permutation (PRP) families that operate on the fixed size block of bits. PRPs are functions that cannot be differentiated from completely random permutations and thus, are considered reliable, until proven unreliable.
Block cipher modes of operation have been developed to eliminate the chance of encrypting identical blocks of text the same way, the ciphertext formed from the previous encrypted block is applied to the next block. A block of bits called an initialization vector (IV) is also used by modes of operation to ensure ciphertexts remain distinct even when the same plaintext message is encrypted a number of times.
Some of the various modes of operation for block ciphers include CBC (cipher block chaining), CFB (cipher feedback), CTR (counter), and GCM (Galois/Counter Mode), among others. Above is an example of CBC mode.
Where an IV is crossed with the initial plaintext block and the encryption algorithm is completed with a given key and the ciphertext is then outputted. This resultant cipher text is then used in place of the IV in subsequent plaintext blocks.
For information on the block ciphers that are implemented in wolfSSL or to learn more about the wolfSSL lightweight, embedded SSL library, go to wolfssl.com or contact us at facts@wolfssl.com.
References
[1] Pseudorandom permutation. (2014, November 23). In Wikipedia, The Free Encyclopedia.
Retrieved 22:06, December 18, 2014, from
http://en.wikipedia.org/w/index.php?title=Pseudorandom_permutation&oldid=635108728.
Most recent version:
https://en.wikipedia.org/wiki/Pseudorandom_permutation
[2] Margaret Rouse. (2014). Block Cipher [Online]. Available URL:
http://searchsecurity.techtarget.com/definition/block-cipher.
[3] Block cipher mode of operation. (2014, December 12). In Wikipedia, The Free
Encyclopedia. Retrieved 22:17, December 18, 2014, from
http://en.wikipedia.org/w/index.php?title=Block_cipher_mode_of_operation&oldid=637837298
Most recent version:
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
[4] Wikimedia. (2014). Available URL:
http://upload.wikimedia.org/wikipedia/commons/d/d3/Cbc_encryption.png.
A Comparison of Differences in TLS 1.1 and TLS 1.2
As stated in the TLS 1.1 and 1.2 protocol definitions (RFC 4346, RFC 5246), “The primary goal of the TLS protocol is to provide privacy and data integrity between two communicating applications.” TLS 1.2 is an improvement to the TLS 1.1 standard, but how exactly do they differ? What was changed in TLS 1.2 to warrant a new version of the protocol?
Listed below are the changes made to both version 1.1 and 1.2 of the TLS protocol. TLS 1.2 support is making headway in more and more new projects today. The wolfSSL embedded SSL/TLS library fully supports SSL 3.0 (disabled at runtime by default), TLS 1.0, TLS 1.1, TLS 1.2, and TLS 1.3.
A. TLS 1.1
This protocol was defined in RFC 4346 in April of 2006, and is an update to TLS 1.0. The major changes are:
– The Implicit Initialization Vector (IV) is replaced with an explicit IV to protect against Cipher block chaining (CBC) attacks.
– Handling of padded errors is changed to use the bad_record_mac alert rather than the decryption_failed alert to protect against CBC attacks.
– IANA registries are defined for protocol parameters
– Premature closes no longer cause a session to be non-resumable.
RFC 4346: http://tools.ietf.org/html/rfc4346#section-1.1
A. TLS 1.2
This protocol was defined in RFC 5246 in August of 2008. Based on TLS 1.1, TLS 1.2 contains improved flexibility. One of the primary goals of the TLS 1.2 revision was to remove the protocol’s dependency on the MD5 and SHA-1 digest algorithms. The major differences include:
– The MD5/SHA-1 combination in the pseudorandom function (PRF) was replaced with cipher-suite-specified PRFs.
– The MD5/SHA-1 combination in the digitally-signed element was replaced with a single hash. Signed elements include a field explicitly specifying the hash algorithm used.
– There was substantial cleanup to the client`s and server`s ability to specify which hash and signature algorithms they will accept.
– Addition of support for authenticated encryption with additional data modes.
– TLS Extensions definition and AES Cipher Suites were merged in.
– Tighter checking of EncryptedPreMasterSecret version numbers.
– Many of the requirements were tightened
– Verify_data length depends on the cipher suite
– Description of Bleichenbacher/Dlima attack defenses cleaned up.
– Alerts must be sent in many cases
– After a certificate_request, if no certificates are available, clients now MUST send an empty certificate list.
– TLS_RSA_WITH_AES_128_CBC_SHA is now the mandatory to implement cipher suite.
– Added HMAC-SHA256 cipher suites.
– Removed IDEA and DES cipher suites. They are now deprecated.
RFC 5246: http://tools.ietf.org/html/rfc5246
C. Goals of the TLS Protocol
– Cryptographic security: TLS should be used to establish a secure connection between two parties.
– Interoperability: Independent programmers should be able to develop applications utilizing TLS that can successfully exchange cryptographic parameters without knowledge of one another`s code.
– Extensibility: TLS seeks to provide a framework into which new public key and bulk encryption methods can be incorporated as necessary. This will also accomplish two sub-goals: preventing the need to create a new protocol (and risking the introduction of possible new weaknesses) and avoiding the need to implement an entire new security library.
– Relative efficiency: Cryptographic operations tend to be highly CPU intensive, particularly public key operations. For this reason, the TLS protocol has incorporated an optional session caching scheme to reduce the number of connections that need to be established from scratch. Additionally, care has been taken to reduce network activity.
Resources:
If you would like to read more about SSL or TLS, here are several resources that might be helpful:
wolfSSL Manual (https://www.wolfssl.com/wolfSSL/Docs-wolfssl-manual-toc.html)
TLS – Wikipedia (http://en.wikipedia.org/wiki/Transport_Layer_Security)
SSL vs TLS – What`s the Difference? (http://luxsci.com/blog/ssl-versus-tls-whats-the-difference.html)
Differences between SSL and TLS versions: (https://www.wolfssl.com/differences-between-ssl-and-tls-protocol-versions/)
Cisco – SSL: Foundation for Web Security (http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-1/ssl.html)
If you have any questions or would like to talk to the wolfSSL team about more information, please contact facts@wolfssl.com.
Differences between SSL and TLS Protocol Versions (#TLS13)
wolfSSL supports all three of these ciphers to best suit your needs and requirements. Below you will find the major differences between the different protocol versions.
SSL 3.0
This protocol was released in 1996, but first began with the creation of SSL 1.0 developed by Netscape. Version 1.0 wasn`t released, and version 2.0 had a number of security flaws, thus leading to the release of SSL 3.0. Some major improvements of SSL 3.0 over SSL 2.0 are:
– Separation of the transport of data from the message layer
– Use of a full 128 bits of keying material even when using the Export cipher
– Ability of the client and server to send chains of certificates, thus allowing organizations to use certificate hierarchy which is more than two certificates deep.
– Implementing a generalized key exchange protocol, allowing Diffie-Hellman and Fortezza key exchanges as well as non-RSA certificates.
– Allowing for record compression and decompression
– Ability to fall back to SSL 2.0 when a 2.0 client is encountered
Netscape`s Original SSL 3.0 Draft: http://www.mozilla.org/projects/security/pki/nss/ssl/draft302.txt
Comparison of SSLv2 and SSLv3: http://stason.org/TULARC/security/ssl-talk/4-11-What-is-the-difference-between-SSL-2-0-and-3-0.html
TLS 1.0
This protocol was first defined in RFC 2246 in January of 1999. This was an upgrade from SSL 3.0 and the differences were not dramatic, but they are significant enough that SSL 3.0 and TLS 1.0 don`t interoperate. Some of the major differences between SSL 3.0 and TLS 1.0 are:
– Key derivation functions are different
– MACs are different – SSL 3.0 uses a modification of an early HMAC while TLS 1.0 uses HMAC.
– The Finished messages are different
– TLS has more alerts
– TLS requires DSS/DH support
RFC 2246: http://tools.ietf.org/html/rfc2246
TLS 1.1
This protocol was defined in RFC 4346 in April of 2006, and is an update to TLS 1.0. The major changes are:
– The Implicit Initialization Vector (IV) is replaced with an explicit IV to protect against Cipher block chaining (CBC) attacks.
– Handling of padded errors is changed to use the bad_record_mac alert rather than the decryption_failed alert to protect against CBC attacks.
– IANA registries are defined for protocol parameters
– Premature closes no longer cause a session to be non-resumable.
RFC 4346: http://tools.ietf.org/html/rfc4346#section-1.1
TLS 1.2
This protocol was defined in RFC 5246 in August of 2008. Based on TLS 1.1, TLS 1.2 contains improved flexibility. The major differences include:
– The MD5/SHA-1 combination in the pseudorandom function (PRF) was replaced with cipher-suite-specified PRFs.
– The MD5/SHA-1 combination in the digitally-signed element was replaced with a single hash. Signed elements include a field explicitly specifying the hash algorithm used.
– There was substantial cleanup to the client`s and server`s ability to specify which hash and signature algorithms they will accept.
– Addition of support for authenticated encryption with additional data modes.
– TLS Extensions definition and AES Cipher Suites were merged in.
– Tighter checking of EncryptedPreMasterSecret version numbers.
– Many of the requirements were tightened
– Verify_data length depends on the cipher suite
– Description of Bleichenbacher/Dlima attack defenses cleaned up.
RFC 5246: http://tools.ietf.org/html/rfc5246
TLS 1.3
This protocol is currently being revised, and is in its 28th draft. The major differences from TLS 1.2 include:
– The list of supported symmetric algorithms has been pruned of all legacy algorithms. The remaining algorithms all use Authenticated Encryption with Associated Data (AEAD) algorithms.
– A zero-RTT (0-RTT) mode was added, saving a round-trip at connection setup for some application data at the cost of certain security properties.
– Static RSA and Diffie-Hellman cipher suites have been removed; all public-key based key exchange mechanisms now provide forward secrecy.
– All handshake messages after the ServerHello are now encrypted.
– Key derivation functions have been re-designed, with the HMAC-based Extract-and-Expand Key Derivation Function (HKDF) being used as a primitive.
– The handshake state machine has been restructured to be more consistent and remove superfluous messages.
– ECC is now in the base spec and includes new signature algorithms. Point format negotiation has been removed in favor of single point format for each curve.
– Compression, custom DHE groups, and DSA have been removed, RSA padding now uses PSS.
– TLS 1.2 version negotiation verification mechanism was deprecated in favor of a version list in an extension.
– Session resumption with and without server-side state and the PSK-based ciphersuites of earlier versions of TLS have been replaced by a single new PSK exchange.
Internet draft 28: https://tools.ietf.org/html/draft-ietf-tls-tls13-28
Resources:
If you would like to read more about SSL or TLS, here are several resources that might be helpful:
TLS – Wikipedia (http://en.wikipedia.org/wiki/Transport_Layer_Security)
SSL versus TLS – What`s the Difference? (http://luxsci.com/blog/ssl-versus-tls-whats-the-difference.html)
Cisco – SSL: Foundation for Web Security (http://www.cisco.com/web/about/ac123/ac147/archived_issues/ipj_1-1/ssl.html)
As always, if you have any questions or would like to talk to the wolfSSL team about more information, please contact facts@wolfssl.com.
TLS 1.3 Draft 28 Support in wolfSSL (#TLS13)
As you may have noticed, we released version 3.15.0 of wolfSSL. One of the features in this release was TLS 1.3 Draft 28 support! Draft 28 is the latest version of the TLS 1.3 specification, and can be enabled in wolfSSL at configure time by using the “–enable-tls13” build option:
--enable-tls13 Enable wolfSSL TLS v1.3 (default: disabled)
If you would still like (or need) to support older drafts of TLS 1.3, we still include support for Drafts 18, 22, 23, and 26. Each of these have their own respective configure option:
--enable-tls13-draft18 Enable wolfSSL TLS v1.3 Draft 18 (default: disabled) --enable-tls13-draft22 Enable wolfSSL TLS v1.3 Draft 22 (default: disabled) --enable-tls13-draft23 Enable wolfSSL TLS v1.3 Draft 23 (default: disabled) --enable-tls13-draft26 Enable wolfSSL TLS v1.3 Draft 26 (default: disabled)
For those interested in what has been changing with new drafts of TLS 1.3, you can view the Change Log in the TLS 1.3 RFC here. The big difference between Draft 27 and Draft 28 was the addition of a section on exposure of PSK identities. If you would like to learn more about wolfSSL’s support for TLS 1.3 and how to use it in your application, please visit our page about it today! We also recently put out a blog post series talking about the performance of TLS 1.3 in wolfSSL:
Part 1 (TLS 1.3 Performance – Resumption)
Part 2 (TLS 1.3 Performance – Full Handshake)
Part 3 (TLS 1.3 Performance – Pre-Shared Key (PSK))
Part 4 (TLS 1.3 Performance – Server Pre-Generation)
Part 5 (TLS 1.3 Performance – Client-Server Authentication)
Part 6 (TLS 1.3 Performance – Throughput)
Performance Comparison: TLS 1.3 in wolfSSL and OpenSSL
If you would like more information about wolfSSL’s support for TLS 1.3 or help on using it in your application, contact us at facts@wolfssl.com.
Weekly updates
Archives
- November 2024 (26)
- October 2024 (18)
- September 2024 (21)
- August 2024 (24)
- July 2024 (27)
- June 2024 (22)
- May 2024 (28)
- April 2024 (29)
- March 2024 (21)
- February 2024 (18)
- January 2024 (21)
- December 2023 (20)
- November 2023 (20)
- October 2023 (23)
- September 2023 (17)
- August 2023 (25)
- July 2023 (39)
- June 2023 (13)
- May 2023 (11)
- April 2023 (6)
- March 2023 (23)
- February 2023 (7)
- January 2023 (7)
- December 2022 (15)
- November 2022 (11)
- October 2022 (8)
- September 2022 (7)
- August 2022 (12)
- July 2022 (7)
- June 2022 (14)
- May 2022 (10)
- April 2022 (11)
- March 2022 (12)
- February 2022 (22)
- January 2022 (12)
- December 2021 (13)
- November 2021 (27)
- October 2021 (11)
- September 2021 (14)
- August 2021 (10)
- July 2021 (16)
- June 2021 (13)
- May 2021 (9)
- April 2021 (13)
- March 2021 (24)
- February 2021 (22)
- January 2021 (18)
- December 2020 (19)
- November 2020 (11)
- October 2020 (3)
- September 2020 (20)
- August 2020 (11)
- July 2020 (7)
- June 2020 (14)
- May 2020 (13)
- April 2020 (14)
- March 2020 (4)
- February 2020 (21)
- January 2020 (18)
- December 2019 (7)
- November 2019 (16)
- October 2019 (14)
- September 2019 (18)
- August 2019 (16)
- July 2019 (8)
- June 2019 (9)
- May 2019 (28)
- April 2019 (27)
- March 2019 (15)
- February 2019 (10)
- January 2019 (16)
- December 2018 (24)
- November 2018 (9)
- October 2018 (15)
- September 2018 (15)
- August 2018 (5)
- July 2018 (15)
- June 2018 (29)
- May 2018 (12)
- April 2018 (6)
- March 2018 (18)
- February 2018 (6)
- January 2018 (11)
- December 2017 (5)
- November 2017 (12)
- October 2017 (5)
- September 2017 (7)
- August 2017 (6)
- July 2017 (11)
- June 2017 (7)
- May 2017 (9)
- April 2017 (5)
- March 2017 (6)
- January 2017 (8)
- December 2016 (2)
- November 2016 (1)
- October 2016 (15)
- September 2016 (6)
- August 2016 (5)
- July 2016 (4)
- June 2016 (9)
- May 2016 (4)
- April 2016 (4)
- March 2016 (4)
- February 2016 (9)
- January 2016 (6)
- December 2015 (4)
- November 2015 (6)
- October 2015 (5)
- September 2015 (5)
- August 2015 (8)
- July 2015 (7)
- June 2015 (9)
- May 2015 (1)
- April 2015 (4)
- March 2015 (12)
- January 2015 (4)
- December 2014 (6)
- November 2014 (3)
- October 2014 (1)
- September 2014 (11)
- August 2014 (5)
- July 2014 (9)
- June 2014 (10)
- May 2014 (5)
- April 2014 (9)
- February 2014 (3)
- January 2014 (5)
- December 2013 (7)
- November 2013 (4)
- October 2013 (7)
- September 2013 (3)
- August 2013 (9)
- July 2013 (7)
- June 2013 (4)
- May 2013 (7)
- April 2013 (4)
- March 2013 (2)
- February 2013 (3)
- January 2013 (8)
- December 2012 (12)
- November 2012 (5)
- October 2012 (7)
- September 2012 (3)
- August 2012 (6)
- July 2012 (4)
- June 2012 (3)
- May 2012 (4)
- April 2012 (6)
- March 2012 (2)
- February 2012 (5)
- January 2012 (7)
- December 2011 (5)
- November 2011 (7)
- October 2011 (5)
- September 2011 (6)
- August 2011 (5)
- July 2011 (2)
- June 2011 (7)
- May 2011 (11)
- April 2011 (4)
- March 2011 (12)
- February 2011 (7)
- January 2011 (11)
- December 2010 (17)
- November 2010 (12)
- October 2010 (11)
- September 2010 (9)
- August 2010 (20)
- July 2010 (12)
- June 2010 (7)
- May 2010 (1)
- January 2010 (2)
- November 2009 (2)
- October 2009 (1)
- September 2009 (1)
- May 2009 (1)
- February 2009 (1)
- January 2009 (1)
- December 2008 (1)