RECENT BLOG NEWS
wolfSSL and CyaSSL are not vulnerable to the recent FREAK attack
The FREAK Attack exploits legacy SSL cipher suites from the 1990s that use RSA export keys. By definition a server in export mode has to use a low bit strength RSA key (512 bits or less), which can now be cracked in around 12 hours. Even if a client supports export cipher suites but doesn’t broadcast support for them a man in the middle attacker can force the server to use the low grade key. Fortunately for wolfSSL and CyaSSL users we do no support export cipher suites and key derivation. No versions of wolfSSL or CyaSSL are vulnerable to the FREAK attack. For more information check out: https://freakattack.com and https://www.smacktls.com/#freak .
Or feel free to visit our website at wolfssl.com or email us at facts@wolfssl.com .
wolfSSL 3.4.0 is Now Available
Release 3.4.0 wolfSSL has bug fixes and new features including:
• wolfSSL API and wolfCrypt API, you can still include the cyassl and ctaocrypt headers which will enable the compatibility APIs for the foreseeable future
• Example use of the wolfCrypt API can be found in wolfcrypt/test/test.c
• Example use of the wolfSSL API can be found in examples/client/client.c
• Curve25519 now supported at the wolfCrypt level, wolfSSL layer coming soon
• Improvements in the build configuration under AIX
• Microchip PIC32 MZ updates
• TI-RTOS updates
• PowerPC updates
• Xcode project update
• Bidirectional shutdown examples in client/server with -w (wait for full shutdown) option
• Cycle counts on benchmarks for x86_64, more coming soon
• ALT_ECC_SIZE for reducing ecc heap use with fastmath when also using large RSA keys
• Various compile warnings
• Scan-build warning fixes
• Changed a memcpy to memmove in the sniffer (if using sniffer please update)
• No high level security fixes that requires an update though we always recommend updating to the latest
CyaSSL name is changing to wolfSSL!
We currently in the process of changing the name of our embedded SSL/TLS library from CyaSSL to wolfSSL. This name change benefits our users and us a with a more consistent and standardized naming convention across our company and products.
A CyaSSL compatibility layer will remain available for those wanting to continue using the CyaSSL API. However, users are encouraged to update to the wolfSSL API upon release.
Aside from the new name, the structure and licensing of the CyaSSL library will remain the same. The FIPS branch of wolfCrypt, which was submitted to NIST for FIPS 140-2 cryptographic module validation, is unaffected by the name change.
Please follow our blog to for the latest information on the CyaSSL to wolfSSL name change. For any questions, please contact us at facts@wolfssl.com.
Seeking Senior C/C++ Developer
Hi! We are currently seeking an additional senior C/C++ developer for our team. Ideally, our best candidates will have 5+ years of experience coding C/C++. Experience at the systems level, working with networking protocols, working with cryptography, and an affinity for open source are useful but not necessary. This is a position where you will primarily work at home, with occasional travel to team meetings, trade events, and customers. With the right skill set, we are open to you working anywhere, but we prefer those who reside in Montana, Seattle, and Portland, because we already have clusters of people working in those locations.
If you are interested, please email your resume to larry@wolfssl.com.
Using wolfSSL to Secure Thermostats
As a lightweight, embedded SSL library, wolfSSL has been used to secure many smart home devices such as lighting, garage doors, washers and dryers, thermostats, as well as a variety of other appliances. Security may not be the first thought when developing a smart home device, but there remains the risk of an attacker gaining access to a wirelessly connected thermostat that has complete control of a home’s heating and cooling system. This could be detrimental to the utility bill, plumbing, and even pets left in the house susceptible to extreme temperatures. Imagine going on vacation during frigid weather and the home’s heating is disabled. This could cause frozen and potentially bursting pipes, which in turn could lead to flooding, costing thousands of dollars in repairs. wolfSSL is designed specifically to prevent these issues. Devices secured with wolfSSL give homeowners a necessary comfort knowing their home is resistant to wireless intruders and other security threats.
For more information on how wolfSSL can be used to secure a smart thermostat or other connected home devices, feel free to visit our website at wolfssl.com or email us at facts@wolfssl.com.
FIPS 140-2 Cryptography on FreeRTOS
Hi! This note is to announce that we will be FIPS 140-2 validating our cryptography library, wolfCrypt, on the FreeRTOS platform. If you need FIPS validated crypto on FreeRTOS, let us know at facts@wolfssl.com.
wolfCrypt has now moved to “Review Pending” on the NIST FIPS Modules in Process List
What is a Block Cipher?
A block cipher is an encryption method that applies a deterministic algorithm along with a symmetric key to encrypt a block of text, rather than encrypting one bit at a time as in stream ciphers. For example, a common block cipher, AES, encrypts 128 bit blocks with a key of predetermined length: 128, 192, or 256 bits. Block ciphers are pseudorandom permutation (PRP) families that operate on the fixed size block of bits. PRPs are functions that cannot be differentiated from completely random permutations and thus, are considered reliable, until proven unreliable.
Block cipher modes of operation have been developed to eliminate the chance of encrypting identical blocks of text the same way, the ciphertext formed from the previous encrypted block is applied to the next block. A block of bits called an initialization vector (IV) is also used by modes of operation to ensure ciphertexts remain distinct even when the same plaintext message is encrypted a number of times.
Some of the various modes of operation for block ciphers include CBC (cipher block chaining), CFB (cipher feedback), CTR (counter), and GCM (Galois/Counter Mode), among others. Above is an example of CBC mode.
Where an IV is crossed with the initial plaintext block and the encryption algorithm is completed with a given key and the ciphertext is then outputted. This resultant cipher text is then used in place of the IV in subsequent plaintext blocks.
For information on the block ciphers that are implemented in wolfSSL or to learn more about the wolfSSL lightweight, embedded SSL library, go to wolfssl.com or contact us at facts@wolfssl.com.
References
[1] Pseudorandom permutation. (2014, November 23). In Wikipedia, The Free Encyclopedia.
Retrieved 22:06, December 18, 2014, from
http://en.wikipedia.org/w/index.php?title=Pseudorandom_permutation&oldid=635108728.
[2] Margaret Rouse. (2014). Block Cipher [Online]. Available URL:
http://searchsecurity.techtarget.com/definition/block-cipher.
[3] Block cipher mode of operation. (2014, December 12). In Wikipedia, The Free
Encyclopedia. Retrieved 22:17, December 18, 2014, from
http://en.wikipedia.org/w/index.php?title=Block_cipher_mode_of_operation&oldid=637837298
[4] Wikimedia. (2014). Available URL:
http://upload.wikimedia.org/wikipedia/commons/d/d3/Cbc_encryption.png.
wolfCrypt FIPS 140-2 Algorithm Certificates
wolfSSL is proud to announce that several wolfCrypt algorithms have received FIPS 140-2 algorithm certificates. The National Institute of Standards and Technology (NIST) website has been updated to reflect wolfSSL`s validation.
wolfSSL`s wolfCrypt has received the following certificate numbers and can be viewed at the respective links.
AES validation certification #3157
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=3157
Triple DES validation certification #1800
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=1800
RSA validation certification #1602
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=1602
SHS validation certification #2614
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=2614
DRBG validation certification #650
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=650
HMAC validation certification #1990
https://csrc.nist.gov/projects/cryptographic-algorithm-validation-program/details?validation=1990
These validations reflect wolfSSL`s commitment to provide the highest quality security standards.
The open source community and federal entities alike can now enjoy wolfSSL`s small footprint designed for embedded systems while taking advantage of the latest in security protocols.
References:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.140-2.pdf
wolfSSL Assembly Optimizations for ARM Processors
If you are looking for an SSL/TLS library to provide security in connected ARM environments, wolfSSL is by far the best choice. wolfSSL is an ARM partner, and our code has been optimized for ARM environments. Public key operations in CyaSSL (wolfSSL) have optimized assembly code that gives wolfSSL faster RSA, Diffie-Hellman, and DSA times.
Optimized assembly code for public key operations can be found in asm.c and are easy to use, simply run ./configure –enable-fastmath and for stack usage reduction we also recommend using TFM_TIMIN_RESISTANT.
For any question regarding wolfSSL in ARM environments please contact us at facts@wolfssl.com.
Weekly updates
Archives
- November 2024 (26)
- October 2024 (18)
- September 2024 (21)
- August 2024 (24)
- July 2024 (27)
- June 2024 (22)
- May 2024 (28)
- April 2024 (29)
- March 2024 (21)
- February 2024 (18)
- January 2024 (21)
- December 2023 (20)
- November 2023 (20)
- October 2023 (23)
- September 2023 (17)
- August 2023 (25)
- July 2023 (39)
- June 2023 (13)
- May 2023 (11)
- April 2023 (6)
- March 2023 (23)
- February 2023 (7)
- January 2023 (7)
- December 2022 (15)
- November 2022 (11)
- October 2022 (8)
- September 2022 (7)
- August 2022 (12)
- July 2022 (7)
- June 2022 (14)
- May 2022 (10)
- April 2022 (11)
- March 2022 (12)
- February 2022 (22)
- January 2022 (12)
- December 2021 (13)
- November 2021 (27)
- October 2021 (11)
- September 2021 (14)
- August 2021 (10)
- July 2021 (16)
- June 2021 (13)
- May 2021 (9)
- April 2021 (13)
- March 2021 (24)
- February 2021 (22)
- January 2021 (18)
- December 2020 (19)
- November 2020 (11)
- October 2020 (3)
- September 2020 (20)
- August 2020 (11)
- July 2020 (7)
- June 2020 (14)
- May 2020 (13)
- April 2020 (14)
- March 2020 (4)
- February 2020 (21)
- January 2020 (18)
- December 2019 (7)
- November 2019 (16)
- October 2019 (14)
- September 2019 (18)
- August 2019 (16)
- July 2019 (8)
- June 2019 (9)
- May 2019 (28)
- April 2019 (27)
- March 2019 (15)
- February 2019 (10)
- January 2019 (16)
- December 2018 (24)
- November 2018 (9)
- October 2018 (15)
- September 2018 (15)
- August 2018 (5)
- July 2018 (15)
- June 2018 (29)
- May 2018 (12)
- April 2018 (6)
- March 2018 (18)
- February 2018 (6)
- January 2018 (11)
- December 2017 (5)
- November 2017 (12)
- October 2017 (5)
- September 2017 (7)
- August 2017 (6)
- July 2017 (11)
- June 2017 (7)
- May 2017 (9)
- April 2017 (5)
- March 2017 (6)
- January 2017 (8)
- December 2016 (2)
- November 2016 (1)
- October 2016 (15)
- September 2016 (6)
- August 2016 (5)
- July 2016 (4)
- June 2016 (9)
- May 2016 (4)
- April 2016 (4)
- March 2016 (4)
- February 2016 (9)
- January 2016 (6)
- December 2015 (4)
- November 2015 (6)
- October 2015 (5)
- September 2015 (5)
- August 2015 (8)
- July 2015 (7)
- June 2015 (9)
- May 2015 (1)
- April 2015 (4)
- March 2015 (12)
- January 2015 (4)
- December 2014 (6)
- November 2014 (3)
- October 2014 (1)
- September 2014 (11)
- August 2014 (5)
- July 2014 (9)
- June 2014 (10)
- May 2014 (5)
- April 2014 (9)
- February 2014 (3)
- January 2014 (5)
- December 2013 (7)
- November 2013 (4)
- October 2013 (7)
- September 2013 (3)
- August 2013 (9)
- July 2013 (7)
- June 2013 (4)
- May 2013 (7)
- April 2013 (4)
- March 2013 (2)
- February 2013 (3)
- January 2013 (8)
- December 2012 (12)
- November 2012 (5)
- October 2012 (7)
- September 2012 (3)
- August 2012 (6)
- July 2012 (4)
- June 2012 (3)
- May 2012 (4)
- April 2012 (6)
- March 2012 (2)
- February 2012 (5)
- January 2012 (7)
- December 2011 (5)
- November 2011 (7)
- October 2011 (5)
- September 2011 (6)
- August 2011 (5)
- July 2011 (2)
- June 2011 (7)
- May 2011 (11)
- April 2011 (4)
- March 2011 (12)
- February 2011 (7)
- January 2011 (11)
- December 2010 (17)
- November 2010 (12)
- October 2010 (11)
- September 2010 (9)
- August 2010 (20)
- July 2010 (12)
- June 2010 (7)
- May 2010 (1)
- January 2010 (2)
- November 2009 (2)
- October 2009 (1)
- September 2009 (1)
- May 2009 (1)
- February 2009 (1)
- January 2009 (1)
- December 2008 (1)