RECENT BLOG NEWS
Live Stream: Mastering the cURL Command Line
We are excited to announce that Daniel Stenberg, the creator of cURL, will be hosting a live stream on Mastering the cURL Command Line Training on August 31st at 9 am PT.
Check out: Mastering the cURL Command Line webinar
cURL, a versatile software project, enables you to securely transfer data using various protocols, such as FTP, FTPS, HTTP, HTTPS, and more.
During the live stream, Daniel will dive into the full potential of cURL and how you can utilize cURL in your projects to achieve maximum security in data transfer. Don’t miss out on this exclusive event to gain knowledge and technical skills directly from Daniel Stenberg, the creator of cURL!
Sneak peek of the live stream:
- An overview of the cURL project
- Command line essentials, including options, URLs, and advanced features
- Practical usage of cURL, covering topics like downloads, uploads, and transfer controls
- In-depth insights into TLS and proxy configurations
- Exploring HTTP protocols, including methods, response codes, and security
- Navigating FTP functionalities, including authentication and file transfers
- Looking at cURL’s future
During the webinar, you will discover the full potential of cURL, which can boost your projects, and learn technical skills.
If you have questions on any of the above, please contact us at facts@wolfSSL.com or +1 425 245 8247.
Download wolfSSL
Added Support for DTLS 1.3 Authentication and Integrity-Only Cipher Suites
As you may already know, DTLS is a protocol designed to secure communication over UDP, particularly suited for constrained IoT devices and use cases where low latency is crucial. wolfSSL stands out as the first provider of a production-ready implementation of the DTLS v1.3 protocol, which is based on TLS v1.3. One of the key advantages of wolfSSL’s DTLS v1.3 implementation is its ability to reuse most parts of the mature wolfSSL TLS 1.3 stack. This not only enables broad hardware support but also ensures that all wolfSSL features, such as post-quantum, HSMs, etc. are supported out of the box.
Indeed only some minor tweaks were needed to add Authentication and Integrity-Only cipher suites support for DTLS v1.3 in wolfSSL version 5.6.2! These cipher suites (TLS_SHA256_SHA256 and TLS_SHA384_SHA384) ensure authentication and integrity but do not provide confidentiality, as messages are sent in clear form. This means that you can be assured of the identity of the communicating entities and promptly detect any unauthorized modifications of the messages, even if they can be read by anyone that can intercept the communication.
There are numerous use cases where authenticity and integrity are of utmost importance, even if confidentiality is not a requirement. This can be especially advantageous for memory and performance-constrained devices, where no confidentiality can lower the number of required cryptographic algorithms, leading to efficient utilization of scarce resources. Industrial automation, industrial control, railways, and civil avionics are a few examples of industries where these cipher suites find practical applications. In other scenarios, third-party inspection of the communication is needed while preserving authenticity and integrity properties; this is also supported thanks to the lack of confidentiality of these cipher suites.
For example RFC 9372 (L-Band Digital Aeronautical Communications System – LDACS), explain how ICAO doc 9896 foresee layer security for all aeronautical data and that DTLS v1.3 provides the security requirement reported from ARINC 858P1. To further insights into how Authentication and Integrity-Only Cipher Suites can be used, refer to RFC 9150, which outlines typical use case scenarios.
In summary wolfSSL’s DTLS v1.3 implementation offers yet another feature: the ability to run on highly constrained memory and performance devices with Authentication and Integrity-Only Cipher Suites. This paves the way for providing authentication and integrity protection while allowing third-party inspection of the communication. To start exploring these capabilities, you can download the source code from our repository on GitHub at https://github.com/wolfSSL/wolfssl.
If you have any feedback, questions, or require support, please don’t hesitate to reach out to us via facts@wolfSSL.com, or call us at +1 425 245 8247.
Download wolfSSL
TLS on the Microchip PIC24
Looking to add TLS to your PIC24 application? Given the resource constraints of the MCU, the wolfSSL lightweight library is the ideal TLS solution for you.
As you may know, wolfSSL has been leveraged in a variety of embedded use cases whether its for its low footprint, high performance, or its cutting-edge crypto engine, wolfCrypt. Now after some recent work, users can take advantage of these same qualities on the 16-Bit PIC24. The libraries’ configurability allows users to focus on their code instead of exhaustive attempts to fit it into ROM alongside their application.
Interested in ensuring secure communication in your PIC24?
As always, if you have questions on any of the above, please contact us at facts@wolfSSL.com, or call us at +1 425 245 8247.
Download wolfSSL
Live Webinar: SM Ciphers are now implemented in wolfSSL; how to access them, use them, and what sets them apart
We are excited to announce that the SM cipher webinar will once again be available for those residing in the European time zone! We invite you to join us for an enlightening webinar discussing the launch of wolfSSL’s SM cipher implementations.
Watch the webinar here: SM Ciphers are now implemented in wolfSSL; how to access them, use them, and what sets them apart
As many people know, Chinese government regulators are now mandating use of SM2, SM3 and SM4 in critical systems, including automobiles, avionics, power systems, and communication systems. Since many of our customers are multi-nationals that do business in China, they have been requesting the addition of these algorithms in wolfSSL products.
We recently released our supported versions of SM2, SM3, and SM4, with the intention to release the ZUC stream cipher at some point this year to completely satisfy SM9. We are also in contact with labs regarding support of OSCCA certification at some point in the future. This is really great news for our customers in Chinese markets!
For those readers considering using wolfSSL products, here’s some additional notes:
- The SM Ciphers are fully supported in wolfSSL’s TLS 1.3 and DTLS 1.3 implementations.
- wolfSSH, wolfBoot and our other products will support ShangMi ciphers.
- ARM, Intel, and RiscV assembly is in the works for our SM implementations for maximum performance
- We support bare metal for SM2, SM3, and SM4.
- We have maximized performance and minimized size, so the ShangMi algorithms will work well for embedded systems use cases on a wide variety of microcontrollers (MCU’s). They will be available for all of the MCU silicon that we currently support, including STM32, NXP i.MX, RISC-V, Renesas RA, RX, and Synergy, Nordic NRF32, Microchip PIC32, Infineon Aurix, TI MSP, and many others.
- Our GPLv2 versions of the SM ciphers are available for download on GitHub
Commercially licensed versions are available.
As always, our webinars will include Q&A sessions throughout the webinar. If you have questions about the ShangMi ciphers and algorithms, please contact us at facts@wolfSSL.com, or call us at +1 425 245 8247.
Download wolfSSL
Experimental support for realm
Looking to add FIPS-certified crypto to your Realm database app? WolfSSL can help!
We are working on getting wolfSSL upstreamed into Realm as a TLS and crypto provider, and can provide a preliminary version tested on Linux for interested customers. We can also work with you to get other platforms like Android and iOS supported by request.
If you want your Realm database to harness the power and security of wolfSSL, please reach out to us and let us know!
As always, if you have questions on any of the above, please contact us at facts@wolfSSL.com, or call us at +1 425 245 8247.
Download wolfSSL
Static library framework for Apple devices
We’ve got an exciting new update for our Apple ecosystem support! wolfSSL now contains a script that automates building and packaging wolfSSL static libraries as an XCFramework that can run on all Apple platforms and targets, further simplifying integration into your Xcode projects.
Instead of manually adding all wolfSSL source files to your Xcode project and having to use a user_settings.h file, you can now simply run the script with your desired configure options to build and package wolfSSL, and then drag-and-drop the imported framework bundle into XCode. The framework bundle contains wolfSSL static libraries targeting all modern Apple platforms and simulators. This includes MacOS (arm64, x86_64), iPhone (arm64), iPhoneSimulator (arm64, x86_64), appleTV (arm64), appleTVSimulator (arm64, x86_64), appleWatch (arm64), and appleWatchSimulator (arm64, x86_64). We also include a new “wolfssl-multiplatform” demo application in Xcode demonstrating how a swift application can use a “bridging header” to call into C code and use wolfSSL.
You can find the new build utilities and the “wolfssl-multiplatform” example app in the wolfSSL source tree at IDE/apple-universal. Check out the README to get started. Integrating wolfSSL to your Xcode project has never been easier!
As always, if you have questions on any of the above, please contact us at facts@wolfSSL.com, or call us at +1 425 245 8247.
Download wolfSSL
How and why to use ECH (Encrypted Client Hello)
In early 2023 wolfSSL added support for the Encrypted Client Hello draft extension for TLS 1.3 (formerly known as Encrypted Server Name Indication(ESNI)). The Encrypted Client Hello (ECH) extension encrypts the client_hello message meant for a TLS 1.3 server and sends it as an extension of an outer client_hello that has the sensitive fields removed. This encryption obfuscates the sensitive parts of the client_hello (such as the Server Name Indication (SNI)) from any passive observer that may capture the client_hello.
Why use ECH?
Data in the client hello can be used to identify which site a client is trying to access behind a reverse proxy, which may be used to track the user across the internet or disrupt a reverse proxy by identifying the number of servers active or where the server may be geographically. If you would like more detailed information on ECH, check out the draft extension and for more information on reverse proxies checkout Cloudflare’s article on proxies.
We recently added a new example of how to set up our TLS 1.3 server to use ECH, available at https://github.com/wolfSSL/wolfssl-examples/blob/master/tls/server-ech-local.c along with an example client that will set the ECH configs out of band and then connect to it https://github.com/wolfSSL/wolfssl-examples/blob/master/tls/client-ech-local.c. When the server starts it creates ech-configs, which are a list of Hybrid Public Key Encryption (HPKE) keys and server names that the server will accept for an ECH connection. Once the configs are generated they can be shared out of band with the client or can be obtained through the retry-configs method by connecting and disconnecting the client with a GREASE ECH. In this example the server will print out the base64 encoded configs that can then be passed to the example client as a command line argument and it will load the configs and use them for ECH. In a typical real world application the ECH configs would be published as a DNS record that the client’s web server fetches but that is outside the scope of wolfSSL.
For more information on HPKE check out our blog post. For an example of how to obtain ECH configs through the retry-configs method, check out our other ECH example. If you have questions on any of the above, please contact us at facts@wolfSSL.com, or call us at +1 425 245 8247.
Download wolfSSL
wolfSSHd Works on Windows!
Did you know that the recent SSHd addition to wolfSSH has also been ported over to Windows? It can run as a service and host incoming SSH, SFTP, and SCP connections. This took some effort in the engineering department here at wolfSSL. Getting interop with clients using Linux terminals streamlined and porting over the wolfSSHd authentication methods. All of this is taken care of in the background making it easy to get up and running. Making use of wolfSSH also gains the advantage of post quantum support along with the cryptographic library wolfCrypt. Additionally providing the capability to be FIPS certified! For more information about using wolfSSHd on Windows contact facts@wolfSSL.com, or call us at +1 425 245 8247.
Download wolfSSL
How to build a smaller wolfSSL library when used with cURL?
The size of software builds can often be a concern for developers, particularly in embedded systems or other resource-constrained environments. Recently, a change was made to the wolfSSL library that has resulted in smaller build sizes when used with the popular cURL library.
When building wolfSSL, this recent change removes the need for using
–enable-opensslextra
instead only requires
–enable-opensslextra=x509small CPPFLAGS=-DHAVE_CURL
This compiles out a lot of compatibility layer functionality (used for ripping out and replacing OpenSSL) that is not needed by cURL. This change can be especially beneficial in resource-constrained environments where smaller builds are crucial. Find more information about using wolfSSL with cURL or about the even smaller tiny-curl. If you have questions on any of the above, please contact us at facts@wolfSSL.com, or call us at +1 425 245 8247.
Download wolfSSL
What Operating Systems has wolfSSL been ported to?
When embarking on a project the operating system used is a hard choice and limiting factor. Many embedded IoT projects even do without the operating system due to resource constraints. wolfSSL is a compact, highly customizable, and open-source SSL/TLS library that provides encryption, authentication, and secure communication. One remarkable feature, among many, of wolfSSL is its versatility – it has been ported to a large selection of operating systems, enabling developers to integrate robust security into a diverse range of platforms.
Ported operating systems range all the way from the obvious and expected operating systems to embedded and niche operating system:
- Linux (embedded Linux, Yocto Linux, PetaLinux, Debian, and more)
- Windows
- MacOS
- FreeBSD, NetBSD, OpenBSD
- Android
- iOS
- QNX
- FreeRTOS, SafeRTOS
- VxWorks
- GreenHills INTEGRITY
- ThreadX
- WinCE
- TRON
- Micrium
- MQX
- embOS
- TOPPERS
- RIOT
- CMSIS-RTOS
- TinyOS
- Nucleus
- Solaris
- OpenWRT
- TI-RTOS
- Keil RTX
- MontaVista
- NonStop
- Zephyr
- Azure Sphere OS
- Deos
- PikeOS
- Apache Mynewt
- AIX
- HP/UX
- Nintendo Wii and Gamecube with DevKitPro
- And many more that wolfSSL could work on…
wolfSSL has been developed from the ground up to work well in embedded devices and edge devices. This design has lent itself well for easily porting over to many different operating systems. If you are working on a project that has a need for some excellent security contact us at facts@wolfSSL.com, or call us at +1 425 245 8247.
Download wolfSSL
Weekly updates
Archives
- November 2024 (26)
- October 2024 (18)
- September 2024 (21)
- August 2024 (24)
- July 2024 (27)
- June 2024 (22)
- May 2024 (28)
- April 2024 (29)
- March 2024 (21)
- February 2024 (18)
- January 2024 (21)
- December 2023 (20)
- November 2023 (20)
- October 2023 (23)
- September 2023 (17)
- August 2023 (25)
- July 2023 (39)
- June 2023 (13)
- May 2023 (11)
- April 2023 (6)
- March 2023 (23)
- February 2023 (7)
- January 2023 (7)
- December 2022 (15)
- November 2022 (11)
- October 2022 (8)
- September 2022 (7)
- August 2022 (12)
- July 2022 (7)
- June 2022 (14)
- May 2022 (10)
- April 2022 (11)
- March 2022 (12)
- February 2022 (22)
- January 2022 (12)
- December 2021 (13)
- November 2021 (27)
- October 2021 (11)
- September 2021 (14)
- August 2021 (10)
- July 2021 (16)
- June 2021 (13)
- May 2021 (9)
- April 2021 (13)
- March 2021 (24)
- February 2021 (22)
- January 2021 (18)
- December 2020 (19)
- November 2020 (11)
- October 2020 (3)
- September 2020 (20)
- August 2020 (11)
- July 2020 (7)
- June 2020 (14)
- May 2020 (13)
- April 2020 (14)
- March 2020 (4)
- February 2020 (21)
- January 2020 (18)
- December 2019 (7)
- November 2019 (16)
- October 2019 (14)
- September 2019 (18)
- August 2019 (16)
- July 2019 (8)
- June 2019 (9)
- May 2019 (28)
- April 2019 (27)
- March 2019 (15)
- February 2019 (10)
- January 2019 (16)
- December 2018 (24)
- November 2018 (9)
- October 2018 (15)
- September 2018 (15)
- August 2018 (5)
- July 2018 (15)
- June 2018 (29)
- May 2018 (12)
- April 2018 (6)
- March 2018 (18)
- February 2018 (6)
- January 2018 (11)
- December 2017 (5)
- November 2017 (12)
- October 2017 (5)
- September 2017 (7)
- August 2017 (6)
- July 2017 (11)
- June 2017 (7)
- May 2017 (9)
- April 2017 (5)
- March 2017 (6)
- January 2017 (8)
- December 2016 (2)
- November 2016 (1)
- October 2016 (15)
- September 2016 (6)
- August 2016 (5)
- July 2016 (4)
- June 2016 (9)
- May 2016 (4)
- April 2016 (4)
- March 2016 (4)
- February 2016 (9)
- January 2016 (6)
- December 2015 (4)
- November 2015 (6)
- October 2015 (5)
- September 2015 (5)
- August 2015 (8)
- July 2015 (7)
- June 2015 (9)
- May 2015 (1)
- April 2015 (4)
- March 2015 (12)
- January 2015 (4)
- December 2014 (6)
- November 2014 (3)
- October 2014 (1)
- September 2014 (11)
- August 2014 (5)
- July 2014 (9)
- June 2014 (10)
- May 2014 (5)
- April 2014 (9)
- February 2014 (3)
- January 2014 (5)
- December 2013 (7)
- November 2013 (4)
- October 2013 (7)
- September 2013 (3)
- August 2013 (9)
- July 2013 (7)
- June 2013 (4)
- May 2013 (7)
- April 2013 (4)
- March 2013 (2)
- February 2013 (3)
- January 2013 (8)
- December 2012 (12)
- November 2012 (5)
- October 2012 (7)
- September 2012 (3)
- August 2012 (6)
- July 2012 (4)
- June 2012 (3)
- May 2012 (4)
- April 2012 (6)
- March 2012 (2)
- February 2012 (5)
- January 2012 (7)
- December 2011 (5)
- November 2011 (7)
- October 2011 (5)
- September 2011 (6)
- August 2011 (5)
- July 2011 (2)
- June 2011 (7)
- May 2011 (11)
- April 2011 (4)
- March 2011 (12)
- February 2011 (7)
- January 2011 (11)
- December 2010 (17)
- November 2010 (12)
- October 2010 (11)
- September 2010 (9)
- August 2010 (20)
- July 2010 (12)
- June 2010 (7)
- May 2010 (1)
- January 2010 (2)
- November 2009 (2)
- October 2009 (1)
- September 2009 (1)
- May 2009 (1)
- February 2009 (1)
- January 2009 (1)
- December 2008 (1)