RECENT BLOG NEWS
TLS Glitch Resistance on Encrypt
We’ve had some recent interest in adding resistance for detection of encrypt issues due to glitching. A recent report for ESP32 AES HW showed it was possible to skip the encrypt operation with some timed glitching. The attack requires physical access to the hardware. The attack results in the HW encrypt operation being skipped and the data being sent unencrypted over the TLS transport.
As a result we’ve added a new build option WOLFSSL_CIPHER_TEXT_CHECK to enable checking of the encrypt to ensure the data changed (i.e. is not the same). It defaults to checking 64-bits of the buffer, but this can be enlarged by overriding the WOLFSSL_CIPHER_CHECK_SZ macro.
We enable this feature by default with our “max strength” build option `–enable-maxstrength`.
For details see PR https://github.com/wolfSSL/wolfssl/pull/5231 “Added sanity check on TLS encrypt to trap against glitching”.
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
wolfSSL Xilinx FreeRTOS
wolfSSL has easy options for using FreeRTOS with LwIP on Xilinx boards! The Xilinx SDK has support for FreeRTOS and LwIP with embedded projects, which wolfSSL has been ported to use both for some time! The directory containing some Xilinx IDE projects and information for a quick start when working with the Xilinx SDK is located here (https://github.com/wolfSSL/wolfssl/tree/master/IDE/XilinxSDK).
With Xilinx FreeRTOS there are also calls to hardware acceleration using the Xilinx hardened crypto which greatly speeds up AES-GCM, SHA3, and RSA operations (https://docs.xilinx.com/v/u/en-US/wp512-accel-crypto). Stay tuned for updated benchmark numbers and status on the hardware acceleration with the new Versal board.
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
wolfSSL Golang Wrapper
wolfSSL now has a very simple Golang wrapper! The wolfSSL embedded TLS library is a lightweight, portable, C-based SSL/TLS library known for its low footprint, speed, and feature set. Users have been able to take advantage of our library not only in C but also in their Java, C#, Python, and JavaScript projects using the various wrappers we provide. With this light Golang wrapper, GO users can do the same.
While GO has its own tls/crypto library, wolfSSL is a proven and optimized solution that could soon be a viable option for GO projects. For some insight on how it would work, follow the instructions in this README to view/build a simple server/client example secured by wolfSSL TLS.
Are you interested in a more complete Golang wrapper?
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
New Announcement! wolfSSL now supports DTLSv1.3!
wolfSSL’s DTLS 1.3 implementation is not ready for commercial use, but it’s fully functional and ready for being beta-tested! As usual, you can find the code at our GitHub repo or you can download the beta version here.
Since its first version, DTLS aims to bring the same security guarantees as TLS, but without requiring a reliable and order-preserving underlying protocol. This means that it’s much more suitable for latency-sensitive applications that can suffer from the overhead of TCP or similar protocols. The specifications of DTLSv1.3 were published just last April (RFC 9147) and DTLSv1.3 brings all the improvements of TLS v1.3 to DTLS: faster and more secure handshake, 0-RTT resumption, modern crypto algorithms, better downgrade protection and so on. We are the first to release a working implementation. If you are working on DTLS, or if you just have questions, don’t hesitate to contact us at facts@wolfssl.com. We’re more than happy to hear from you!
Want to talk to us face to face about DTLS 1.3 at Embedded World?
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
wolfSSH SSHD
We are in the process of developing an SSHD server with wolfSSH. This will be a fully featured application that can take in a typical OpenSSH style sshd_config file and handle incoming SSH connections. It’s backed by the progressive and well tested wolfCrypt library for all crypto operations. It is also developed with embedded devices in mind, having a reduced footprint size!
For early access to the SSHD server or questions contact us at facts@wolfssl.com.
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
wolfMQTT with Post-Quantum KYBER and FALCON
Here at wolfSSL, we pride ourselves on keeping up to date with the various post-quantum developments related to the protocols we support. wolfMQTT is a client side library that supports the MQTT publish and subscribe protocol that is a very good fit for IoT applications.
Recently, the OpenQuantumSafe project got a pull request for a new demo which featured the mosquito MQTT broker operating on top of TLS 1.3 with post-quantum cryptographic algorithms. Naturally, we were very excited to try and run some interoperability tests against it!
This blog post is to announce that wolfMQTT now supports KYBER_LEVEL1 KEM group and P256_KYBER_LEVEL1 hybrid group for key exchange along with FALCON_LEVEL1 for signature authentication over TLS 1.3. Our implementation has been successfully tested for inter-operability with the OpenQuantumSafe project’s mosquito MQTT broker demo. If you would like to try it out, please follow the instructions athttps://github.com/wolfSSL/wolfmqtt#post-quantum-mqtt-support
Want different post-quantum groups for KEM key exchange? Want other post-quantum signature schemes? Want to see the wolfSSL team make a post-quantum MQTT broker? Want to see this setup working on STM32 devices?
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
When – and how – to prepare for post-quantum cryptography
McKinsey and Company have release the following report “When – and how – to prepare for post-quantum cryptography” https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/when-and-how-to-prepare-for-post-quantum-cryptography
In it they outline some options regarding how you can handle the coming migration to post-quantum cryptography. Here is a brief summary of their options our response:
Option 1: Adopt post-quantum cryptography solutions today
While adopting one of these solutions might seem to be the best path for any company that needs to act today, there are trade-offs and drawbacks to consider…
The wolfSSL library already has post-quantum algorithms integrated. Let us help you understand these new trade-offs. Don’t worry, speed and performance won’t be a major factor. Please see our benchmarks: https://www.wolfssl.com/docs/benchmarks/
Option 2: Retrofit systems with post-quantum cryptography solutions later
Finally, organizations should begin building long-term relationships with relevant suppliers, regulators, and peers within and outside of their industries as soon as possible. These relationships will be critical for staying up to date on emerging standards and solutions for PQC. … collectively developing solutions, for example, could cost less than if an organization devised solutions on its own.
The wolfSSL Team has a long and stable history of providing quality open-source software for security protocols and we are here to stay. We are here to help you find the right solution that will help you comply with industry standards and interoperate with your peers.
Option 3: Focus only on enhancing traditional encryption protocols
Decision makers should also begin planning for future updates to long-lasting systems by, for instance, evaluating the modularity of their technological architecture.
The wolfSSL Team also provides various consulting services. We can help you update to the latest standards while becoming more flexible and agile to prepare for the coming post-quantum migration.
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
wolfEngine 1.1.0
We’re happy to announce that wolfEngine 1.1.0 has been released! wolfEngine is an OpenSSL engine that helps users migrate to a FIPS-validated cryptography library (wolfCrypt) all while continuing to use OpenSSL. This new version fixes a couple bugs and adds support for RSA signatures with X9.31 padding. Additionally, the example OpenSSL configuration file, engine.conf, and the examples subdirectory are now part of releases.
If you are interested in a commercial version of wolfEngine or our wolfCrypt FIPS 140-2 or 140-3 modules!
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
cURL Up Canceled
The cURL Project and wolfSSL are sorry to inform you that Daniel Stenberg tested positive for COVID-19 this morning, and is unable to fly to the US for the cURL Up event. We have decided to cancel the cURL Up event happening June 6th. We are planning on rescheduling cURL Up for sometime in September.
Thank you for your understanding. Stay tuned for more news.
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
Secure boot and glitching attacks
In general, a “glitch” is a momentary fault that may happen on a system, preventing it from working properly, for a brief amount of time. The effects of a single glitch on proper software execution may be multiple, including catastrophic consequences that may prevent the system from continuing the execution.
Glitching attacks are complex and expensive to execute, but can be a real issue for secure boot mechanisms, and often very hard to prevent or mitigate. They aim at exploiting predictable consequences of single glitches in order to take control of the execution or the data contained in the system. The glitch can be injected using different techniques, which often rely on well known weaknesses of the specific microcontroller or CPU. The most common glitch injection consists in varying the voltage supplied to the chip at a specific time, or modifying the profile of the clock signal to mangle the timing of the execution of the instructions. More advanced attacks can rely on irradiating the device with strong electromagnetic interference.
In the specific context of secure boot, the goal for an attacker is to circumvent the security checks in those critical sections of the code, e.g. the code that performs verifications on the firmware authenticity, integrity or versioning. These attacks could eventually defeat the security checks, and take control of the system by uploading an unauthorized firmware image. While they require an accurate synchronization and several attempts, these attacks will eventually succeed in injecting a fault in the hardware at the required time in order to skip the verification.
Our secure bootloader, wolfBoot, follows the indication of RFC9019 to provide a secure, public key based verification of the integrity and authenticity of the firmware and its updates. It runs on several different architectures, from small microcontrollers up to x86_64 systems. wolfBoot is OS-agnostic and provides best-in-class security thanks to the FIPS 140-2 certified algorithms implemented in the wolfCrypt security engine.
wolfBoot already comes with plenty of unique features. Now it is also the first open source secure bootloader to implement mitigations against glitching attacks. Our development team has recently added an optional feature that can be activated at compile time, to reinforce the security of the critical variables and decision points in the code. This has required an evaluation of the code flow of wolfBoot from a point of view that includes the possibility for an attacker to skip single specific instructions. Introducing these mitigations has been tricky, because redundant code written in C is usually discarded by the compiler. For this reason the countermeasures must be programmed in assembly, which makes this code architecture specific.
Our latest release of wolfBoot contains these countermeasures. Glitching support mitigation can be freely compiled and used in GPL projects for evaluation and auditing purposes.
To compile wolfBoot with glitching and side-channel attack mitigations turned on, it is sufficient to add ARMORED=1 to the configuration options (i.e. via command line when invoking make, or through the .config file). The ARMORED option is currently supported on ARM Cortex-M architecture. Support for other architectures will be added in the future.
You can download wolfBoot today from our download page or from our github repository
What is the next feature that you want to see implemented in wolfBoot? Is there any architecture or platform that we don’t yet support that could benefit from our glitch-resistant secure boot mechanism? Let us know!
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
Weekly updates
Archives
- November 2024 (26)
- October 2024 (18)
- September 2024 (21)
- August 2024 (24)
- July 2024 (27)
- June 2024 (22)
- May 2024 (28)
- April 2024 (29)
- March 2024 (21)
- February 2024 (18)
- January 2024 (21)
- December 2023 (20)
- November 2023 (20)
- October 2023 (23)
- September 2023 (17)
- August 2023 (25)
- July 2023 (39)
- June 2023 (13)
- May 2023 (11)
- April 2023 (6)
- March 2023 (23)
- February 2023 (7)
- January 2023 (7)
- December 2022 (15)
- November 2022 (11)
- October 2022 (8)
- September 2022 (7)
- August 2022 (12)
- July 2022 (7)
- June 2022 (14)
- May 2022 (10)
- April 2022 (11)
- March 2022 (12)
- February 2022 (22)
- January 2022 (12)
- December 2021 (13)
- November 2021 (27)
- October 2021 (11)
- September 2021 (14)
- August 2021 (10)
- July 2021 (16)
- June 2021 (13)
- May 2021 (9)
- April 2021 (13)
- March 2021 (24)
- February 2021 (22)
- January 2021 (18)
- December 2020 (19)
- November 2020 (11)
- October 2020 (3)
- September 2020 (20)
- August 2020 (11)
- July 2020 (7)
- June 2020 (14)
- May 2020 (13)
- April 2020 (14)
- March 2020 (4)
- February 2020 (21)
- January 2020 (18)
- December 2019 (7)
- November 2019 (16)
- October 2019 (14)
- September 2019 (18)
- August 2019 (16)
- July 2019 (8)
- June 2019 (9)
- May 2019 (28)
- April 2019 (27)
- March 2019 (15)
- February 2019 (10)
- January 2019 (16)
- December 2018 (24)
- November 2018 (9)
- October 2018 (15)
- September 2018 (15)
- August 2018 (5)
- July 2018 (15)
- June 2018 (29)
- May 2018 (12)
- April 2018 (6)
- March 2018 (18)
- February 2018 (6)
- January 2018 (11)
- December 2017 (5)
- November 2017 (12)
- October 2017 (5)
- September 2017 (7)
- August 2017 (6)
- July 2017 (11)
- June 2017 (7)
- May 2017 (9)
- April 2017 (5)
- March 2017 (6)
- January 2017 (8)
- December 2016 (2)
- November 2016 (1)
- October 2016 (15)
- September 2016 (6)
- August 2016 (5)
- July 2016 (4)
- June 2016 (9)
- May 2016 (4)
- April 2016 (4)
- March 2016 (4)
- February 2016 (9)
- January 2016 (6)
- December 2015 (4)
- November 2015 (6)
- October 2015 (5)
- September 2015 (5)
- August 2015 (8)
- July 2015 (7)
- June 2015 (9)
- May 2015 (1)
- April 2015 (4)
- March 2015 (12)
- January 2015 (4)
- December 2014 (6)
- November 2014 (3)
- October 2014 (1)
- September 2014 (11)
- August 2014 (5)
- July 2014 (9)
- June 2014 (10)
- May 2014 (5)
- April 2014 (9)
- February 2014 (3)
- January 2014 (5)
- December 2013 (7)
- November 2013 (4)
- October 2013 (7)
- September 2013 (3)
- August 2013 (9)
- July 2013 (7)
- June 2013 (4)
- May 2013 (7)
- April 2013 (4)
- March 2013 (2)
- February 2013 (3)
- January 2013 (8)
- December 2012 (12)
- November 2012 (5)
- October 2012 (7)
- September 2012 (3)
- August 2012 (6)
- July 2012 (4)
- June 2012 (3)
- May 2012 (4)
- April 2012 (6)
- March 2012 (2)
- February 2012 (5)
- January 2012 (7)
- December 2011 (5)
- November 2011 (7)
- October 2011 (5)
- September 2011 (6)
- August 2011 (5)
- July 2011 (2)
- June 2011 (7)
- May 2011 (11)
- April 2011 (4)
- March 2011 (12)
- February 2011 (7)
- January 2011 (11)
- December 2010 (17)
- November 2010 (12)
- October 2010 (11)
- September 2010 (9)
- August 2010 (20)
- July 2010 (12)
- June 2010 (7)
- May 2010 (1)
- January 2010 (2)
- November 2009 (2)
- October 2009 (1)
- September 2009 (1)
- May 2009 (1)
- February 2009 (1)
- January 2009 (1)
- December 2008 (1)