RECENT BLOG NEWS

So, what’s new at wolfSSL? Take a look below to check out the most recent news, or sign up to receive weekly email notifications containing the latest news from wolfSSL. wolfSSL also has a support-specific blog page dedicated to answering some of the more commonly received support questions.

Open Quantum Safe and wolfSSL Joint Wireshark Integration

In a recent blog post we showed the details of a quantum-safe connection using wireshark. This post is to announce that now you can also do the exact same thing by following instructions provided by our friends at the Open Quantum Safe group. They have generously hosted a wireshark integration via docker that will display algorithm names using both their naming convention as well as wolfSSL’s.

The default naming convention is OQS’s but if you want to use wolfSSL’s naming convention, simply clone their repo at `git@github.com:open-quantum-safe/oqs-demos.git` and in the `wireshark/Dockerfile` change the following line:

ARG QSC_SSL_FLAVOR="oqs"

… to …

ARG QSC_SSL_FLAVOR="wolfssl"

… and then follow the rest of the instruction in `wireshark/README.md` and `wireshark/USAGE.md`. We at wolfSSL would like to thank our friends at the OpenQuantumSafe project for their hard work!


If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

OpenSSL 3.0 Provider Solution with FIPS

As you may know, wolfSSL has integrated our FIPS-certified crypto module, wolfCrypt, with OpenSSL as an OpenSSL engine, in a product we call wolfEngine. OpenSSL 3.0 has done away with the engines paradigm in favor of a new concept, called providers. wolfSSL now has a FIPS 140-2 solution for an OpenSSL 3.0 provider, allowing you to use the latest version of OpenSSL backed by our FIPS-certified wolfCrypt library.

wolfSSL is also in the process of getting certified for FIPS 140-3.  Once certified, our OpenSSL 3.0 provider solution will also be FIPS 140-3 ready. Like wolfEngine, the wolfSSL provider for OpenSSL is an excellent pathway for users looking to get FIPS compliance fast while still using OpenSSL.

For more information, visit our blog post on the difference between FIPS 140-2 and FIPS 140-3.

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfBoot UEFI Support

We’re happy to announce that we’ve added experimental support to run wolfBoot as an EFI application! The Unified Extensible Firmware Interface (UEFI) is a specification that describes an interface between the operating system (OS) and the platform firmware and it replaces the old BIOS-like firmware. Now wolfBoot can run inside the UEFI environment on Intel x86_64 machines and load and verify other EFI applications.

This means that we can use it to boot and verify Linux (Linux supports booting as EFI application, a.k.a. EFI STUB) on UEFI machines.

UEFI has a several other interesting features that we plan to integrate in the future: such as SecureBoot and TPM.

To try wolfBoot EFI visit our repository on GitHub, you can also run an example on QEMU!

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

Power Usage Benchmark with EEMBC

The latest benchmarks of wolfSSL power consumption on an STM32L476G device are up (https://www.eembc.org/viewer/?benchmark_seq=13436). What we found is that using wolfSSL’s SP math (with assembly speed ups) is superior on the device. It has a positive impact on both the speed and power consumption.

With the measurements used with EEMBC (https://www.eembc.org/) higher final scores are better. Without using any optimizations in building wolfSSL the power usage collected was 2170 and performance was 502. Once turning on optimizations and SP assembly the power usage was 13200 and performance was 3050.

The energy score is derived from an inverted, weighted, micro Joules per iteration. Similarly the performance is an inverted, weighted, microseconds per iteration. ECDSA operations saw a significant performance and power usage improvement with SP math enabled and assembly optimizations compiled in. ECDSA operations are the biggest resource consumers with TLS handshakes and a good indication of how long and how much power a TLS connection will use.

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfSSL NXP SE050 Support

We are excited to announce wolfSSL’s support for the NXP SE050. The wolfSSL SE050 port supports a variety of algorithms including: SHA, SHA2-224, SHA2-256, SHA2-384, SHA2-512, AES-CBC, AES-ECB, ECDSA, ECDHE and most notably ED25519 / CURVE25519.

In the tested configuration a Raspberry Pi 2b was connected to the SE050 dev kit through a header board. Please refer to this guide if interested in replicating hardware configuration (https://www.nxp.com/docs/en/application-note/AN12570.pdf).

Below are hardware accelerated benchmarks using the NXP SE050:

AlgorithmPerformance
TRNG0.114 KB/s
ECDH - Shared SecretAvg 169.276 ms
ECDSA - SignAvg 102.899 ms
ECDSA - VerifyAvg 102.920 ms
ED25519 - SignAvg 261.323 ms
ED25519 - VerifyAvg 143.541 ms
CURVE25519 agreeAvg 157.089 ms

If you have an interest in using wolfSSL with this board, please see:
https://github.com/wolfSSL/wolfssl/tree/master/wolfcrypt/src/port/nxp

Additionally, wolfSSL also provides support for the latest version of the TLS protocol, TLS 1.3! Find more information about TLS 1.3 here: https://www.wolfssl.com/docs/tls13/

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

MQTT Secure Firmware Update Example

Our wolfMQTT project includes an example for secure firmware update or Over the Air (OTA) update. This example uses the wolfSSL embedded SSL/TLS library to hash/sign the binary image and send it over MQTT. The example has two applications. One is called fwpush, which hashes, signs and publishes the firmware image over TLS to an MQTT broker. The second is called fwclient, which subscribes to the example firmware update topic, receives the firmware image and validates the signature of it. This example is located in examples/firmware.

The latest wolfMQTT releases can be downloaded at:
https://wolfssl.com/download

Documentation for wolfMQTT can be found here:
https://www.wolfssl.com/docs/wolfmqtt-manual/

The latest source code can be found on our GitHub repo at:
https://github.com/wolfSSL/wolfMQTT

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfSSL Support Added for Python

We’re happy to announce that we’ve added wolfSSL support to Python version 3.8.5 using our OpenSSL compatibility layer! The wolfSSL port allows you to use Python with our FIPS 140-2/3 certified wolfCrypt library. To build Python with wolfSSL, follow the instructions in our open source projects repository here.

To view wolfSSL’s collection of open source project ports, visit our osp repository on GitHub!

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfSSL Support Added for sblim-sfcb

We’re happy to announce that we’ve added wolfSSL support to sblim-sfcb version 1.4.9 using our OpenSSL compatibility layer! sblim-sfcb is a lightweight CIM server/daemon. The wolfSSL port allows you to use sblim-sfcb with our FIPS 140-2/3 certified wolfCrypt library. To build sblim-sfcb with wolfSSL, follow the instructions in our open source projects repository here.

To view wolfSSL’s collection of open source project ports, visit our osp repository on GitHub!

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfSSL Support for ESP-IDF and ESP32-WROOM-32

Are you a user of the ESP-IDF(Espressif IoT Development Framework)? If so, you will be happy to know that wolfSSL has support and example projects in the wolfSSL embedded SSL/TLS library for ESP-IDF.

ESP-IDF is intended for rapidly developing Internet-of-Things (IoT) applications, with Wi-Fi, Bluetooth, power management and several other system features.

The ESP-IDF “Get Started” document can be found here:

https://docs.espressif.com/projects/esp-idf/en/latest/get-started/index.html

In order to use wolfSSL under ESP-IDF, you need to deploy wolfSSL source files into the IDE. Please see the README.md placed in the “IDE/Espressif/ESP-IDF/” directory of wolfSSL source tree. In addition to that, example projects including TLS server/client, wolfCrypt test and benchmark are also provided. For building these examples, please see each README.md in example projects directories. When working with ESP-IDF, wolfSSL worked with the ESP32-WROOM-32 device.

wolfSSL also has a page that elaborates upon the use of Espressif with wolfSSL and the Espressif hardware devices, located here: https://www.wolfssl.com/docs/espressif/

Our wolfSSL master branch can be cloned here:
https://github.com/wolfSSL/wolfssl

The README.md can be found here:
https://github.com/wolfSSL/wolfssl/blob/master/IDE/Espressif/ESP-IDF/README.md

Additional examples for wolfSSL TLS Client/Server and wolfCrypt test/benchmark applications can be found here:
https://github.com/wolfSSL/wolfssl/tree/master/IDE/Espressif/ESP-IDF/examples

This support is currently located in our GitHub master branch, and will roll into the next stable release of wolfSSL as well. 

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfSSL Support Added for OpenResty

We’re happy to announce that we’ve added wolfSSL support to OpenResty versions 1.19.3.1 and 1.13.6.2 using our OpenSSL compatibility layer! OpenResty is a web platform based on nginx and LuaJIT. The wolfSSL port leverages our existing nginx port. Using wolfSSL with OpenResty allows you to use OpenResty with our FIPS 140-2/3 certified wolfCrypt library. To build OpenResty with wolfSSL, follow the instructions in our open source projects repository here.

To view wolfSSL’s collection of open source project ports, visit our osp repository on GitHub!

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

Posts navigation

1 2 3 61 62 63 64 65 66 67 189 190 191

Weekly updates

Archives