RECENT BLOG NEWS
New APIs for running updates to ChaCha20/Poly1305 AEAD
wolfSSL 4.4.0 introduces new ChaCha20/Poly1305 API’s for AEAD to allow “chunked” updates of data followed by a final calculation for the authentication tag. This uses the same “Init”, “Update”, “Final” conventions commonly available with our hash algorithms.
New API’s are available by default and can be disabled using: NO_CHACHAPOLY_AEAD_IUF.
wc_ChaCha20Poly1305_CheckTag wc_ChaCha20Poly1305_Init wc_ChaCha20Poly1305_UpdateAad wc_ChaCha20Poly1305_UpdateData wc_ChaCha20Poly1305_Final wc_Poly1305_Pad wc_Poly1305_EncodeSizes
These additions resulted in the following additional enhancements to the wolfSSL library and regression testing:
- Refactor of functions
wc_ChaCha20Poly1305_Encrypt
andwc_ChaCha20Poly1305_Decrypt
to use the newChaChaPoly_Aead
context and the new init/update/final functions. - Refactor of the Poly1305 AEAD / MAC to reduce duplicate code (Footprint Optimizations)
- Tests for TLS v1.3 interop and ChaCha20/Poly1305 AEAD test vectors.
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
Building Qt with wolfSSL
wolfSSL 4.4.0 adds support for building Qt 5.12 and 5.13 against the wolfSSL embedded SSL/TLS library instead of the default OpenSSL backend! Using wolfSSL as a TLS provider in Qt can have many advantages, depending on application and industry. Some of these may include:
- Progressive TLS protocol support (up to TLS 1.3)
- Smaller footprint size (wolfSSL is up to 20 times smaller than OpenSSL)
- Extensive testing (wolfSSL is the best-tested SSL/TLS implementation available today)
- Certifications (FIPS 140-2, DO-178C)
- Portability (wolfSSL supports over 30 operating systems)
- Hardware cryptography support
- Commercial support
- Consulting services and training available
To compile wolfSSL for Qt, we have added a new configure option named “–enable-qt“. To compile Qt with the wolfSSL patch:
1. Follow the Building Qt Guide to download needed Qt dependencies and initialize the Qt repository.
2. Change directories into the qt5 directory and checkout a branch between 5.12-5.13.
$ cd qt5 $ git checkout [branch_name]
3. Apply the wolfSSL Qt patch file to qt5.
$ cd qt5/qtbase $ patch -p1 < /path/to/wolfssl_qt_src.patch
4. Link to wolfSSL directly by setting the WOLFSSL_LIBS variable.
$ export WOLFSSL_LIBS="-L/path/to/wolf-install/lib -lwolfssl"
5. Configure Qt using the “-wolfssl-linked” option, and add wolfSSL header directories to the include path.
$ ./configure -wolfssl-linked -I/path/to/wolf-install/include/wolfssl -I/path/to/wolf-install/include
6. Build Qt.
$ make
7. Test the build.
$ make test
8. Or, run tests individually:
$ qtbase/tests/auto/network/ssl/qsslcertificate/tst_qsslcertificate $ qtbase/tests/auto/network/ssl/qasn1element/tst_qasn1element $ qtbase/tests/auto/network/ssl/qpassworddigestor/tst_qpassworddigestor $ qtbase/tests/auto/network/ssl/qsslcipher/tst_qsslcipher $ qtbase/tests/auto/network/ssl/qssldiffiehellmanparameters/tst_qssldiffiehellmanparameters $ qtbase/tests/auto/network/ssl/qsslellipticcurve/tst_qsslellipticcurve $ qtbase/tests/auto/network/ssl/qsslerror/tst_qsslerror $ qtbase/tests/auto/network/ssl/qsslkey/tst_qsslkey $ qtbase/tests/auto/network/ssl/qsslsocket/tst_qsslsocket $ qtbase/tests/auto/network/ssl/qsslsocket_onDemandCertificates_member/tst_qsslsocket_onDemandCertificates_member $ qtbase/tests/auto/network/ssl/qsslsocket_onDemandCertificates_static/tst_qsslsocket_onDemandCertificates_static
wolfSSL’s port into Qt has not been merged upstream yet, and is currently distributed in patch form.
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
SSL/TLS in Qt: Introduction to wolfSSL
Don’t miss this hot topic! wolfSSL Chris Conlon, Engineering Manager presents:
Qt has traditionally used OpenSSL as the provider for SSL/TLS in Qt Network for secure network communications. Qt developers who are looking for a lightweight, progressive, and well-tested SSL/TLS implementation will be happy to learn how Qt can be used with the wolfSSL embedded SSL/TLS library.
wolfSSL provides progressive SSL/TLS protocol support up to TLS 1.3, maintains a minimal memory footprint, and focuses on extensive testing to reduce bugs and vulnerabilities. This session provides an overview of wolfSSL and advantages it brings to Qt developers when used in place of OpenSSL. Viewers will gain insight into how they can build Qt with wolfSSL, learn about the current state of SSL/TLS and the cryptography algorithms it uses, and have a chance to ask the experts about their SSL/TLS questions.
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
wolfSSH SSH Agent Support
wolfSSL Inc is adding support for the SSH-AGENT authentication to wolfSSH. The SSH-AGENT allows one to log in through multiple machines with a single private key on one’s local terminal. A good example is logging onto a test server and then accessing GitHub with git which uses SSH. Git will ask SSH on the test server to sign its handshake message, and that request is forwarded back to your local terminal over the SSH tunnel where the data is signed with your private key. No fuss, no muss. The wolfSSH agent will interoperate with OpenSSH and Dropbear.
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
Renesas Trusted Secure IP (TSIP) Driver Support
Did you know that the wolfSSL embedded SSL/TLS library supports the Renesas Trusted Secure IP Driver (TSIP) and has been tested on the Renesas RX65N platform? Using the TSIP driver, wolfSSL can offload supported cryptographic and TLS operations to the underlying Renesas hardware for increased performance.
wolfSSL has been integrated with the following TSIP capabilities:
- TSIP driver open/close
- Random number generation, tested with SP 800-22
- SHA-1 and SHA-256 hash function support
- AES-128-CBC and AES-256-CBC support
- TLS capabilities including:
- Root CA verification
- Client and/or Server certificate verification including intermediate certificate verification
- Support for four TLS cipher suites:
- TLS_RSA_WITH_AES_128_CBC_SHA
- TLS_RSA_WITH_AES_128_CBC_SHA256
- TLS_RSA_WITH_AES_256_CBC_SHA
- TLS_RSA_WITH_AES_256_CBC_SHA256
The following benchmarks show the performance improvement when using hardware cryptography on the Renesas RX65N through the Renesas TSIP driver.
Algorithm | Software Crypto | TSIP Accelerated Crypto |
---|---|---|
RNG | 231.160 KB/s | 1.423 MB/s |
SHA | 1.239 MB/s | 22.254 MB/s |
SHA-256 | 515.565 KB/s | 25.217 MB/s |
Cipher Suite | Software Crypto (sec) | TSIP Accelerated Crypto (sec) |
---|---|---|
TLS_RSA_WITH_AES_128_CBC_SHA | 0.381 | 0.028 |
TLS_RSA_WITH_AES_128_CBC_SHA256 | 0.383 | 0.028 |
TLS_RSA_WITH_AES_256_CBC_SHA | 0.382 | 0.030 |
TLS_RSA_WITH_AES_256_CBC_SHA256 | 0.385 | 0.029 |
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
Distribution of Crypto Operations
wolfSSL is developing a library to handle the location of where crypto operations run amongst multiple cores. For large systems that have many sign/verify operations happening at once this library would be able to distribute those sign/verify requests based on a user’s input. In addition to managing where the operation runs it can be used to plug in hardware acceleration for handling requests that come in. An example use case would be having 3 cores for generic lower priority operations and saving 1 core that has hardware acceleration for fast, real time responses, that would run high priority operations.
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
Crypto Validation with wolfACVP
The new Automated Cryptographic Validation Protocol is the successor to the two decade old CAVP system from NIST. The ACVP system is intended to alleviate the manual steps of the older process, creating a more efficient and effective method for cryptographic algorithm testing and validation. The project started in 2016 and is currently executing the final Phase 4 objectives. More information from NIST’s website about the ACVP project can be found here:
https://csrc.nist.gov/Projects/Automated-Cryptographic-Validation-Testing
When completed, ACVP will be required for FIPS 140 compliance. wolfSSL is ready, and has already begun submitting algorithms to the NIST Demo server using the wolfACVP client library. Those results can be viewed here.
wolfSSL wants to make your FIPS 140, TLS, embedded, or IoT project successful!
Download the latest release from https://www.wolfssl.com/download/
or from our GitHub page at https://github.com/wolfSSL/wolfssl
While you’re there, show us some love by starring our project!
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
Fuzzing for wolfSSL
This post was written by Guido Vranken and originally published on his blog (May 13, 2020).
Larry Stefonic of wolfSSL contacted me after he’d noticed my project for fuzzing cryptographic libraries called Cryptofuzz. We agreed that I would write a Cryptofuzz module for wolfSSL.
I activated the wolfSSL module for Cryptofuzz on Google’s OSS-Fuzz, where it has been running 24/7 since. So far, Cryptofuzz has found a total of 8 bugs in wolfCrypt.
Larry and Todd Ouska then asked me if I was interested in writing fuzzers for the broader wolfSSL library. I was commissioned for 80 hours of work.
I started by implementing harnesses for the TLS server and client. Both support 5 different flavors of TLS: TLS 1, 1.1, 1.2, 1.3 and DTLS.
wolfSSL allows you to install your own IO handlers. Once these are in place, each time wolfSSL wants to either read or write some data over the network, these custom handlers are invoked, instead calling recv() and send() directly.
For fuzzing, this is ideal, because fuzzers are best suited to operate on data buffers rather than network sockets. Working with actual sockets in fuzzers is possible, but this tends to be slower and more complex than piping data in and out of the target directly using buffers.
Hence, by using wolfSSL’s IO callbacks, all actual network activity is sidestepped, and the fuzzers can interact directly with the wolfSSL code.
Emulating the network
In the write callback, I embedded some code that specifically checks the outbound data for uninitialized memory. By writing this data to /dev/null, it can be evaluated by valgrind and MemorySanitizer.
Furthermore, I ensured that my IO overloads mimic the behavior of a real network.
On a real network, a connection can be closed unexpectedly, either due to a transmission failure, a man-in-the-middle intervention or as a deliberate hangup by the peer.
It is interesting to explore the library’s behavior in the face of connection issues, as this can activate alternative code paths that normally are not traversed, so this strategy harbors the potential to find bugs that are missed otherwise.
For example, what if wolfSSL wants to read 50 bytes from a socket, but the remote peer sends only 20?
These are situations that are feasible if an attacker were to deliberately impose transfer throttling in their communication with an endpoint running wolfSSL.
Addition and subtraction have shown to pose a challenge in programming, especially when they pertain to array sizes; many buffer overflows and infinite loops in software (not wolfSSL in particular) can be traced back to off-by-one calculations and integer overflows.
Networking software like wolfSSL needs to keep a tally of completed and pending transmissions and in light of this it is a worthwhile experiment to observe what will happen when faced with uncommon socket behavior.
Finding instances of resource exhaustion
Buffer overflows are not the only kind of bug software can suffer from.
For example, it would be unfortunate if an attacker could bring down a TLS server by sending a small, crafted packet.
Fuzzing can be helpful in finding denial of service bugs. Normally, fuzzers use code coverage as a feedback signal. By instead using the branch count or the peak memory usage as a signal, the fuzzer will tend to find slow inputs (many branches taken means a long execution time) or inputs that consume a lot of memory, respectively.
Several years ago I implemented some modifications to libFuzzer which allow me to easily implement fuzzers that find denial-of-service bugs. For my engagement with wolfSSL, I applied these techniques to each fuzzer that I wrote. I ended up providing three binaries per fuzzer:
- a generic one that seeks to find memory bugs, using code coverage as a signal
- one that tries to find slow inputs by using the branch count as a signal
- one that finds inputs resulting in excessive heap allocation
Emulating allocation failures
Using wolfSSL_SetAllocators(), wolfSSL allows you to replace its default allocation functions. This opens up interesting possibilities for finding certain bugs.
One thing I did in my custom allocator was to return an invalid pointer for a malloc() or realloc() call requesting 0 bytes. This way, if wolfSSL would try to dereference this pointer, a segmentation fault will occur.
This special code is needed because even AddressSanitizer will not detect access to a 0-byte allocated region, but it is important to test for, as such behavior can lead to real crashes on systems like OpenBSD, which intentionally return an invalid pointer from malloc(0), just like my code does.
Another possibility of implementing your own memory allocator is that it can be designed to fail sometimes.
On most desktop systems, malloc() always succeeds, but that may not be the case universally, especially not on resource-constrained systems which cannot resort to page swapping for acquiring additional memory.
Allocation failures activate code paths which are normally not accounted for by unit tests. I implemented this behavior for all fuzzers I wrote for wolfSSL.
In the TLS-specific code, 5 bugs were found.
Fuzzing auxiliary code
TLS is large and complex, and it can take fuzzers a while to traverse all its code paths, so in the interest of efficiency, I wrote several additional fuzzers specifically aimed at subsets of the library, like X509 certificate parsing (historically a wellspring of bugs across implementations), OCSP request and response handling (for which a subset of HTTP is implemented) and utility functions like base64 and base16 coders.
This approach found 9 additional bugs.
Testing the bignum library
wolfSSL comes with a bignum library that it uses for asymmetric cryptography. Because it is imperative that computations with bignums are sound, I took a project of mine called bignum-fuzzer (which has also found security bugs in other bignum libraries, like OpenSSL’s CVE-2019-1551) and appropriated it for use with wolfSSL. It is not only able to find memory bugs, but also incorrect calculation results.
I set out to test the following sub-libraries in wolfSSL:
- Normal math
- Single-precision math (–enable-sp)
- Fastmath (–enable-fastmath)
5 instances of incorrect calculations were found. The other bugs involved invalid memory access and hangs.
wolfSSH
In addition to wolfSSL and wolfCrypt, I also spent some time looking at wolfSSH, which is the company’s SSH library offering.
In this component I uncovered 7 memory bugs, 1 memory leak and 1 crash bug.
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
wolfSSL Use With Hexagon Toolchain
The Hexagon SDK is used for building code to run on DSP processors. Use of the Hexagon toolchain to offload ECC verify operations has been added to wolfSSL. This can free up the main CPU for other operations or lead to future optimizations with HVX on some algorithms that use vector operations. The Makefile for building with the Hexagon toolchain and a README with more information can be found in the directory wolfssl-4.4.0/IDE/HEXAGON.
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
Top Ten Things you should know about Secure Boot
At wolfSSL, we have been developing secure boot solutions with customers for many years, and more recently we have released wolfBoot, a secure bootloader designed for embedded systems.
wolfBoot provides reliable support to remote firmware updates on a wide range of devices, supporting the most common architectures (ARM Cortex-M, ARM Cortex-A, RISC-V RV32).
wolfBoot supports all types of RTOS and embedded operating systems, so it can be used to boot FreeRTOS, Contiki, RIOT-OS, ChibiOS, ThreadX, VxWorks, QNX, TRON/ITRON/uITRON, Micrium’s uC/OS, FreeRTOS, SafeRTOS, Freescale MQX, Nucleus, TinyOS, TI-RTOS, uTasker, embOS, INtime, MbedOS, Linux, and many more…
Here is our list of the top ten interesting facts about secure boot.
10. Trusted firmware updates have become a requirement for IoT projects
IoT devices are not immune to cyber attacks, and many real-life cases have proven that misconfigured systems may even be an easier challenge for an attacker, and sometimes even compromise the entire distributed system from a single vulnerability in one software component.
Vulnerabilities happen. No matter whether the software is completely written from scratch or depends on third party components, defects in the implementation may surface at the worst time possible for the project timeline, and critical systems cannot afford to keep vulnerable versions running. At wolfSSL we know that security software development never sleeps. As soon as new vulnerabilities are discovered, the entire team immediately switch their focus on delivering a fix, launch all the tests and release a new version of the software.
IT services may already benefit of continuous deployment mechanisms to ensure that new versions of the software components are available to run just after they have been updated and delivered. This is a good way to reduce risks related to running outdated software in production.
Why should similar mechanisms not be widely available on embedded systems? Well, the question is complicated, due to a few aspects. The diversity of microcontrollers available on the market poses quite a few challenges for embedded systems developers to provide a unified mechanism that fits all the scenarios, use cases, platform specific hardware and sometimes unique communication interfaces and protocols. Moreover, embedded software is generally installed from a monolithic
binary file, containing a 1:1 match to the physical content of the non-volatile memory onboard. Updating a single component may be tricky unless there has been some specific partitioning mechanism in place.
The effort for defining the guidelines for a secure and safe firmware update mechanism have been lead by the SUIT group within IETF, which has studied the problem and has produced a standard draft: draft-ietf-suit-architecture-08. The document “[…] lists the requirements and describes an architecture for a firmware update mechanisms suitable for IoT devices.”
9. Updates are verified using public-key signature authentication
The key feature offered by a secure bootloader following the SUIT definition is the use of state-of-the-art cryptography to guarantee the authenticity of the current firmware and the updates that are coming from a remote source. By using public-key based authentication it is possible to verify that all the software on board before running it.
The mechanism is quite simple: the owner of the device creates a key pair. The private key is secret, it is never revealed or stored on the device itself. The private key is used by a script or a program to sign the manifest header, which is transmitted alongside with the binary image of the new software. The manifest header contains all the meta-data associated to the firmware image.
The bootloader can access a copy of the public key, as it is stored on the non-volatile memory on board, or on a specific hardware secure vault. The public key is not a secret, and even if revealed, it does not pose any risk for the secure boot process.
When the bootloader receives the update package, it uses the public key to initiate the verification. Only software that contains valid metadata, including a verifiable signature, will be allowed to run on the target.
8. Operating with small bootloaders
The secure bootloader is, in many cases, the only immutable part of an embedded system. SUIT specifications assume that in general the bootloader itself will not be uploaded because this may pose a risk in reliability. For this reason, one of the requirements for the implementation of a secure bootloader is to keep the bootloader small, and dedicate other components in the system to the task of transferring the firmware images and initiating the update.
This also means that code safety is critical in bootloader context, to guarantee the required level of reliability and minimize the attack surface. SUIT in particular mandates the use of small parsers in the code, since parsers are described as a “known source of bugs”.
One step further in this direction is to completely avoid dynamic memory allocations in the bootloader code. Measuring the memory usage at compile time and allocating static buffers for all the data structures significantly reduce the chance of memory management bugs such as overlapping of sections or heap-stack collisions when inappropriate memory mappings are configured.
A secure bootloader implementation cannot ignore resources and safety related requirements, or the risk is to create bigger issues than what it is expected to fix!
7. Rollback attacks
In the perspective of continuous vulnerability management, new updates are released and made available often. Unless the firmware images are transferred using a secure channel, such as TLS, there is always a risk that an old update is intercepted by an attacker, or anyone who is sniffing the traffic towards the firmware consuming device. This is particularly true in those broadcast-friendly environments, e.g. if the firmware images are distributed through a local mesh network that does not support secure socket communication.
An attacker may know about a vulnerability in a previous version, and attempt to downgrade the firmware on the target device to that specific version, by repeating the transmission of the firmware image previously recorded by wiretapping on the network.
A secure boot mechanism must retain the information about the firmware version alongside with all the other information in the manifest header. The version number, like the rest of the meta data, is enclosed in the envelope together with the firmware image during the signing process, which means that the version cannot be altered by an attacker without compromising the validity of the signature for the update package. The bootloader will not allow to install packages with a version number that is older than the one that is currently running on the system.
Rollback attacks are very easy to perform and preventing them is a key task for the secure bootloader.
6. Power failures and high reliability
According to Murphy’s law “anything that can go wrong will go wrong”. In the case of remote updates installation, the worst point to lose the power or having any kind of hardware glitch that results in a system reset is when the content of the non-volatile memory is altered during the installation of firmware updates. If a power cut occurs in the middle of a FLASH sector copy operation, the state of the destination sector is unpredictable upon the next boot.
A mechanism that can prevent this situation, like the one implemented in wolfBoot, consists in keeping always two copies of the same sector, and using a mechanism based on flags to confirm that each step has been completed. Upon reboot, the operation can be resumed from the last successful operation, so there is no risk of leaving the system in an unrecoverable state.
5. Secure boot and secure update transfers
Downloading the new version is a task for the embedded application, or a thread running on top of a real-time operating system. As indicated by SUIT, including the responsibility of transferring the firmware image in the bootloader code
would result in a bigger, more complex secure bootloader with external dependencies on protocol stack implementations and platform-specific device drivers. Embedded systems may in fact access the network picking from a variety of different connectivity technologies available. Not all of these technologies share the same protocol families or transport mechanisms. Some low power communication protocol such as LPWAN may even have stricter requirements on bandwidth or network availability.
wolfSSL is the embedded SSL/TLS library targeted for embedded systems. Being transport-layer agnostic that can provide secure socket communication on top of all kinds of data transfer technologies and operating system or bare metal applications.
Using the latest standard (TLS 1.3) to secure your connections means that devices can communicate to each other and to the back-end on end-to-end secured channels, using the best cryptography available as standard to date.
Some of the benefits of securing all the data in motion using TLS include of course encryption of all the data transferred between two endpoints, and optionally server-side identification for clients that access data, services or remote firmware updates.
On systems where the entire stack is deployed, including TLS socket communication, transferring the firmware images can be done over the same channel so that the update package can travel the network to the firmware consumer securely.
As TLS may not be an option for a subset of device with a very limited amount of resources available, at least encryption should be considered on such devices. wolfCrypt is a crypto engine targeted for embedded, RTOS and resource constraint environments, which is the core component of wolfSSL, but can as well used as standalone library to access the implementation of the most popular algorithms and cyphers.
4. Key management and trust anchors
In a distributed system architecture designed for remote firmware updates, key management is a critical task. The back-end system is in charge of keeping the private key (or keys) safe, and generating signed packages to distribute to firmware consumers when a new version is available.
wolfBoot is distributed with a toolbox of key management scripts and utilities that can be easily integrated on server side to facilitate these tasks. In the simplest case, the signature that is included in update packages is obtained using a private key which is accessible by the owner of the device. In some cases, a more elaborated key provisioning system is in place. When a separate software or hardware component is performing the signature step, the package creation process can be split to redirect and delegate the DSA step to another component.
The public key that is stored inside the embedded system is considered a ‘trust anchor’, because the trust in the validity of the remote firmware updates depends on the integrity of the public key used for digital authentication.
Trust anchor management is in general outside the generic scope of a bootloader itself because it depends on the hardware platform. However, it is of primary importance to include adequate protections against the risk of compromising the public key stored on the device and used by the bootloader to validate the authenticity of the firmware. A trust anchor store should be protected against write access using the available countermeasures available in hardware.
3. Secure elements and trust anchor stores
The best way of protecting trust anchors and other cryptographic material is using a hardware component that is designed for this purpose. Hardware security module (HSM, CAAM, etc.) usually offer both key storage and cryptographic operation acceleration in the same module. wolfCrypt, our crypto engine that powers wolfBoot, supports all possible schemes from a wide range of manufacturer-specific API to access this functionality, such as Microchip ATECC608A, ARM CryptoCell, NXP CAU/mmCAU/LTC, STMicroelectronic PKA, and many others.
More recently, an effort of agreeing on the protocols used to the access to security cryptoprocessors, ISO/IEC standardized the TPM (Trusted Platform Module) format, which is in use nowadays in nearly all personal computers and notebooks. The same technology is now available for embedded systems thanks to wolfTPM, a library providing APIs to access TPM 2.0 compatible secure element. Popular TPM devices supported by wolfTPM include the ST33 and the Infineon 9670.
wolfBoot can as well be optionally compiled together with wolfTPM to make use of secure key storage and cryptography acceleration provided by these devices.
2. Updating the bootloader
The SUIT proposed standard recommends that the small bootloader is immutable, due to the intrinsic complexity for the bootloader to implement a reliable way to update itself. However in some cases it is useful to have the possibility to update the bootloader code itself.
Consider for example a situation where the public key is built-in the bootloader code, key provisioning relies on a single private key and this key gets compromised on the back-end.
Another case is a long life product, where the algorithms or the key length in use by the bootloader code today may become obsolete, or compromised, by many years of research. In a few years it may become a requirement to update the bootloader code to match new requirements.
For these reasons we think that giving the possibility to update the bootloader code is important. wolfBoot can be optionally compiled to support this option. A special update package that is marked as wolfboot self-update will cause the bootloader to overwrite its own code after a successful validation of the package itself.
The bootloader update process is not completely fail-safe due to intrinsic hardware constraints, but it is sufficiently reliable to be used for those emergency cases described above.
1. Estimating the development effort
When approaching secure boot and remote updates, it is often too easy to underestimate the impact of this single task on the development cycle of the entire project. A large amount of effort is spent on guaranteeing the reliability of the system in all the possible cases that could occur when the device is deployed.
The bootloader is perhaps the most critical part of the system. Everything else in your application can break, as long as there is still a way to update it from a remote location. Implementing a secure bootloader from scratch for a specific project is a tough task which in some cases may require as much development and testing as all the rest of the software components in the system.
At wolfSSL we have several years of experience in supporting our customers to build secure boot and remote updates solutions, and we have designed wolfBoot to provide a solid platform that can be used as the fundamental building block that can fit any secure boot architectural requirements.
We are available to talk with you about your design and we are happy to provide design and development services to complete the integration with any custom embedded system.
We understand how important security is in your IoT project, and we are the only company to offer 24×7 support on secure boot solutions for remote firmware updates.
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.
Weekly updates
Archives
- November 2024 (26)
- October 2024 (18)
- September 2024 (21)
- August 2024 (24)
- July 2024 (27)
- June 2024 (22)
- May 2024 (28)
- April 2024 (29)
- March 2024 (21)
- February 2024 (18)
- January 2024 (21)
- December 2023 (20)
- November 2023 (20)
- October 2023 (23)
- September 2023 (17)
- August 2023 (25)
- July 2023 (39)
- June 2023 (13)
- May 2023 (11)
- April 2023 (6)
- March 2023 (23)
- February 2023 (7)
- January 2023 (7)
- December 2022 (15)
- November 2022 (11)
- October 2022 (8)
- September 2022 (7)
- August 2022 (12)
- July 2022 (7)
- June 2022 (14)
- May 2022 (10)
- April 2022 (11)
- March 2022 (12)
- February 2022 (22)
- January 2022 (12)
- December 2021 (13)
- November 2021 (27)
- October 2021 (11)
- September 2021 (14)
- August 2021 (10)
- July 2021 (16)
- June 2021 (13)
- May 2021 (9)
- April 2021 (13)
- March 2021 (24)
- February 2021 (22)
- January 2021 (18)
- December 2020 (19)
- November 2020 (11)
- October 2020 (3)
- September 2020 (20)
- August 2020 (11)
- July 2020 (7)
- June 2020 (14)
- May 2020 (13)
- April 2020 (14)
- March 2020 (4)
- February 2020 (21)
- January 2020 (18)
- December 2019 (7)
- November 2019 (16)
- October 2019 (14)
- September 2019 (18)
- August 2019 (16)
- July 2019 (8)
- June 2019 (9)
- May 2019 (28)
- April 2019 (27)
- March 2019 (15)
- February 2019 (10)
- January 2019 (16)
- December 2018 (24)
- November 2018 (9)
- October 2018 (15)
- September 2018 (15)
- August 2018 (5)
- July 2018 (15)
- June 2018 (29)
- May 2018 (12)
- April 2018 (6)
- March 2018 (18)
- February 2018 (6)
- January 2018 (11)
- December 2017 (5)
- November 2017 (12)
- October 2017 (5)
- September 2017 (7)
- August 2017 (6)
- July 2017 (11)
- June 2017 (7)
- May 2017 (9)
- April 2017 (5)
- March 2017 (6)
- January 2017 (8)
- December 2016 (2)
- November 2016 (1)
- October 2016 (15)
- September 2016 (6)
- August 2016 (5)
- July 2016 (4)
- June 2016 (9)
- May 2016 (4)
- April 2016 (4)
- March 2016 (4)
- February 2016 (9)
- January 2016 (6)
- December 2015 (4)
- November 2015 (6)
- October 2015 (5)
- September 2015 (5)
- August 2015 (8)
- July 2015 (7)
- June 2015 (9)
- May 2015 (1)
- April 2015 (4)
- March 2015 (12)
- January 2015 (4)
- December 2014 (6)
- November 2014 (3)
- October 2014 (1)
- September 2014 (11)
- August 2014 (5)
- July 2014 (9)
- June 2014 (10)
- May 2014 (5)
- April 2014 (9)
- February 2014 (3)
- January 2014 (5)
- December 2013 (7)
- November 2013 (4)
- October 2013 (7)
- September 2013 (3)
- August 2013 (9)
- July 2013 (7)
- June 2013 (4)
- May 2013 (7)
- April 2013 (4)
- March 2013 (2)
- February 2013 (3)
- January 2013 (8)
- December 2012 (12)
- November 2012 (5)
- October 2012 (7)
- September 2012 (3)
- August 2012 (6)
- July 2012 (4)
- June 2012 (3)
- May 2012 (4)
- April 2012 (6)
- March 2012 (2)
- February 2012 (5)
- January 2012 (7)
- December 2011 (5)
- November 2011 (7)
- October 2011 (5)
- September 2011 (6)
- August 2011 (5)
- July 2011 (2)
- June 2011 (7)
- May 2011 (11)
- April 2011 (4)
- March 2011 (12)
- February 2011 (7)
- January 2011 (11)
- December 2010 (17)
- November 2010 (12)
- October 2010 (11)
- September 2010 (9)
- August 2010 (20)
- July 2010 (12)
- June 2010 (7)
- May 2010 (1)
- January 2010 (2)
- November 2009 (2)
- October 2009 (1)
- September 2009 (1)
- May 2009 (1)
- February 2009 (1)
- January 2009 (1)
- December 2008 (1)