How Much Battery Power Does TLS Use?

Power consumption on IoT devices can be a big concern. Especially when adding in the latest security and using DTLS 1.3 / TLS 1.3 connections to secure communication. Here at wolfSSL we minimize power consumption and work with EEMBC to measure how much power wolfSSL is consuming when adding security to battery powered designs. Benchmarks of wolfSSL power consumption on an STM32L476G device are available here (https://www.eembc.org/viewer/?benchmark_seq=13436). These benchmarks prove that wolfSSL is the perfect security solution for Ultra Low-Power WiFI designs.

ULP WiFI is a great solution for battery connected devices, but cryptography and TLS can be computationally expensive, so we’ve optimized wolfSSL to minimize energy usage. What we have found is that using wolfSSL’s SP (Single Precision) math with assembly speed ups is superior and has a positive impact on both performance and power consumption. More recently, we are exploring additional energy saving optimizations for the Talaria Two ULP and NXP i.MX ULP WiFi parts.  

wolfSSL also supports TLS over BLE for maximum security on sensitive designs. Here is an example of using wolfSSL with Bluetooth Low Energy (BTLE) (https://github.com/wolfSSL/wolfssl-examples/tree/master/btle). In the example directory there is a TLS 1.3 over Bluetooth example too! (https://github.com/wolfSSL/wolfssl-examples/tree/master/btle/tls).

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfSSL Release 5.6.3 Available!

wolfSSL release 5.6.3 is available. This is a minor release version that resolves an issue found when building with autoconf in release 5.6.2. Included in this release are 3 other improvements and fixes that increase the quality of code and ease of use of wolfSSL. The following is a list of all 4 items in wolfSSL 5.6.3:

  • Fix for setting the atomic macro options introduced in release 5.6.2. This issue affects GNU gcc autoconf builds. The fix resolves a potential mismatch of the generated macros defined in options.h file and the macros used when the wolfSSL library is compiled. In version 5.6.2 this mismatch could result in unstable runtime behavior.
  • Fix for invalid suffix error with Windows build using the macro GCM_TABLE_4BIT.
  • Improvements to Encrypted Memory support (WC_PROTECT_ENCRYPTED_MEM) implementations for modular exponentiation in SP math-all (sp_int.c) and TFM (tfm.c).
  • Improvements to SendAlert for getting the output buffer.

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfSSL Release 5.6.2 Available!

wolfSSL release 5.6.2 is now available! wolfSSL 5.6.2 brings many new features, exciting enhancements, fixes, and vulnerability fixes. Here at wolfSSL the developers are working diligently to achieve the highest level of security for users. Release 5.6.2 provides quality fixes which we were able to find and address by working quickly with independent researchers who file reports of potential issues.

Some of the notable changes in this release are:
* Adding in support for STM32H5, Renesas TSIP v1.17, Renesas SCE RSA crypto-only support, NXP IMX6Q CAAM port with QNX
* An ASN.1 syntax parsing utility located in ./examples/asn1/ directory
* Memory usage optimizations and code size reduction with lean builds
* Documentation, benchmark app, and unit test app improvements
* Fixes for use with STM32 and code quality improvements including a potential out of buffer access fix

Two vulnerabilities were addressed in this release dealing with TLS 1.3 client side behavior and another with AES side channel issue on RISC-V. More details about the vulnerabilities can be found in the wolfSSL ChangeLog along with special thanks to the researchers who reported them.

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfSSH: Post-Quantum Interoperability? Confirmed!

For people following the development of wolfSSH, they might have noticed something very strange recently. There is a new key exchange method that has a very long name: ecdh-nistp256-kyber-512r3-sha256-d00@openquantumsafe.orgThis replaces ecdh-sha2-nistp256-kyber-512-sha256 which was similar but had some differences in data formatting.

This name comes from the following IETF draft authored by Panos Kampanakis and Torben Hansen of AWS and Douglas Stebila of the University of Waterloo: https://www.ietf.org/id/draft-kampanakis-curdle-ssh-pq-ke-01.html

The main purpose of this post is to let everyone know that our wolfSSH implementation of ecdh-nistp256-kyber-512r3-sha256-d00@openquantumsafe.org passed NIST NCCoE interoperability tests!  It was tested against the AWS implementation of SSH and OQS’s fork of openSSH (https://github.com/open-quantum-safe/openssh). Here at wolfSSL, we know that for protocol products such as wolfSSH, interoperability is a key requirement to be an ecosystem player.  Our customers can rest easy knowing that they can interoperate with other products seamlessly.  Want to try it out? You can download it from https://github.com/wolfSSL/wolfssh

This is just one hybrid key exchange. If you want other post-quantum key exchanges or signature schemes to be supported in wolfSSH, let us know!  We are always interested to hear about what you want us to do! If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfEngine: wolfCrypt as an Engine for OpenSSL

Watch our live wolfEngine webinar, where we introduce one of our newest products wolfEngine, a separate standalone library which links against wolfSSL (libwolfssl) and OpenSSL. wolfEngine implements and exposes an OpenSSL engine implementation which wraps the wolfCrypt native API internally. Algorithm support matches that as listed on the wolfCrypt FIPS 140-2 certificate #3389.

Learn about about what wolfEngine is, why you should care, and why wolfEngine could be the solution to all of your problems. As always bring your questions for the Q&A following the presentation.

Watch it now: wolfEngine : wolfCrypt as an Engine for OpenSSL
If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

cURL User Survey 2023

This post has been cross posted from Daniel Stenberg’s blog – originally posted here.

For widely used, widely distributed open source project such as curl, we often have little to no relation at all with our users and therefore it is hard to get feedback and learn what works and what is less good.

Our best and primary way is thus simply to ask users every year how they use curl.

user survey

For the tenth consecutive year, we put together a survey and we ask everyone we know and can reach who ever used curl or library within the last year, to donate a few minutes of their precious time and give us their honest opinions.

The survey is anonymous but hosted by Google. We do not care who you are, but we want to know how you think curl works for you.

The survey will remain online for submissions during 14 days. From Thursday May 25 2023 until midnight (CEST) Wednseday June 7 2023. Please tell your friends about it!

user survey

Post survey analysis

At June 5 the painstaking work of analyzing the results and putting together a summary and presentation begins. It usually takes me a few weeks to complete. Once that is done, the results will be shared for the entire world to enjoy.

Then we see what the curl project should take home and do as a direct result of what users say. Updating procedures, writing documentation and adding features to the roadmap are among the things that can happen and has happened after previous surveys.

Support

  • wolfSSL offers Curl support is available, and part of that support revenue goes into finding and fixing these kinds of vulnerabilities.
  •  Customers under curl support can get advice on whether or not the advisories apply to them.
  •  24×7 support on curl is available, and can include pre-notification of upcoming vulnerability announcements.

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

“BUSted” – Everything you need to know on Side-channel attacks to TrustZone-M separation

“BUSted” – Everything you need to know on Side-channel attacks to TrustZone-M separation
Watch the webinar here:  “BUSted” – Everything you need to know on Side-channel attacks to TrustZone-M Separation

Join our wolfSSL webinar about BUSted presented by wolfSSL engineer Daniele Lacamera as well as either Dr. Sandro Pinto or Cristiano Rodrigues.

At the Black Hat Asia conference in Singapore, Dr. Sandro Pinto and Cristiano Rodrigues presented their research that introduced a groundbreaking technique that exploits the shared pipeline on the newest Cortex-M CPUs to place a time based, side-channel attack from an application running in non-secure domain to security code running in secure mode. The researchers named this attack “BUSted”. This is sudden and difficult news hitting the new generations of ARMv8 microcontrollers. The attack was demonstrated live using a Cortex-M33 microcontroller as target.

Due to the nature of the attack, targeting specific micro-architectural design issues, this disclosure has already been compared to “Spectre” and “Meltdown”, well known attacks that have affected more sophisticated architectures in the recent past. All the embedded projects that were counting on hardware-assisted privilege separation through TrustZone-M should now take into account the possibility of leaking information from the trusted components running in the secure world.

According to the researchers, software based countermeasures and mitigations are possible to counter the effects of this micro-architectural design fault. The most important aspect to take into account when dealing with time-based attacks is to avoid as much as possible secret-dependent code in the implementation of security operations. In other words, the time required for a security procedure to run must not depend on the success of the operation or on any secret involved in the operation.

Tune in to this webinar to learn more about the attack from the researchers themselves as well as from cybersecurity experts how wolfSSL has been proactive and already studying the necessary workarounds for our users and customers.

As always we will have a Q&A Session following the webinar

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

wolfSSL support for STM32 hardware

We’ve expanded our STM32 support for wolfSSL to include the STM32H5 and G0. The STM32WL is also coming soon.

Using STM32 hardware and development boards are easy with our wolfSSL, wolfSSH and wolfMQTT (soon) Cube packs. These packs integrate with the STM32CubeIDE and STM32CubeMX tools for generating a project and code with support for our libraries.

The documentation for using the Cube packs is here:

https://github.com/wolfSSL/wolfssl/tree/master/IDE/STM32Cube

The new wolfSSL build options are:

  • H5: WOLFSSL_STM32H5
  • G0: WOLFSSL_STM32G0

wolfCrypt benchmarks for the H5 and G0 have been posted here:

https://github.com/wolfSSL/wolfssl/blob/master/IDE/STM32Cube/STM32_Benchmarks.md

We’ve also added wolfBoot support for the STM32G0. The wolfBoot STM32H5 support is coming soon. For details on wolfBoot G0 support see: https://github.com/wolfSSL/wolfBoot/pull/286

If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

STM32Cube Expansion Packs for more wolfSSL Products

The wolfSSL embedded TLS library has support for most of the STM32 microcontrollers and for their hardware-based cryptography (AES/HASH/PKA) and random number generator (TRNG). Here are the STM32 processors we currently support:

  • STM32F2
  • STM32F4
  • STM32F7
  • STM32F1
  • STM32L4
  • STM32L5
  • STM32WB
  • STM32H7
  • STM32G0
  • STM32U5
  • STM32H5

wolfSSL offers STM32Cube Expansion Packages for the STM32 toolset, letting users pull wolfSSL and wolfSSH directly into STM32CubeMX and STM32CubeIDE projects.

We currently support STM32Cube Expansion packs for wolfSSL and wolfSSH (our lightweight SSHv2/SCP/SFTP library). Soon we will be adding packs for wolfMQTT (our MQTT client implementation) and wolfTPM (our TPM 2.0 library).

For information on our wolfSSL Cube pack see:
https://github.com/wolfSSL/wolfssl/blob/master/IDE/STM32Cube/README.md

For information on our wolfSSH Cube pack see:
https://github.com/wolfSSL/wolfssh/blob/master/ide/STM32CUBE/README.md

Are you looking to improve our STM32 support within wolfSSL products? If you have any questions or run into any issues, contact us at facts@wolfssl.com, or call us at +1 425 245 8247.

Posts navigation

1 2 3 48 49 50 51 52 53 54 197 198 199